220 resultados para ENZYMATIC HYDROLYSIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii FTI 20037 yeast on xylose reductase (XR) and xylitol dehydrogenase (XDH) enzymes activities was performed during fermentation in sugarcane bagasse hemicellulosic hydrolysate. The xylitol production was evaluated by using cells previously growth in 30.0 gl(-1) xylose, 30.0 gl(-1) glucose and in both sugars mixture (30.0 gl(-1) xylose and 2.0 gl(-1) glucose). The vacuum evaporated hydrolysate (80 gl(-1)) was detoxificated by ion exchange resin (A-860S; A500PS and C-150-Purolite(A (R))). The total phenolic compounds and acetic acid were 93.0 and 64.9%, respectively, removed by the resin hydrolysate treatment. All experiments were carried out in Erlenmeyer flasks at 200 rpm, 30A degrees C. The maximum XR (0.618 Umg (Prot) (-1) ) and XDH (0.783 Umg (Prot) (-1) ) enzymes activities was obtained using inoculum previously growth in both sugars mixture. The highest cell concentration (10.6 gl(-1)) was obtained with inoculum pre-cultivated in the glucose. However, the xylitol yield and xylitol volumetric productivity were favored using the xylose as carbon source. In this case, it was observed maximum xylose (81%) and acetic acid (100%) consumption. It is very important to point out that maximum enzymatic activities were obtained when the mixture of sugars was used as carbon source of inoculum, while the highest fermentative parameters were obtained when xylose was used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Xylitol bioproduction from lignocellulosic residues comprises hydrolysis of the hemicellulose, detoxification of the hydrolysate, bioconversion of the xylose, and recovery of xylitol from the fermented hydrolysate. There are relatively few reports on xylitol recovery from fermented media. In the present study, ion-exchange resins were used to clarify a fermented wheat straw hemicellulosic hydrolysate, which was then vacuum-concentrated and submitted to cooling in the presence of ethanol for xylitol crystallization. RESULTS: Sequential adsorption into two anion-exchange resins (A-860S and A-500PS) promoted considerable reductions in the content of soluble by-products (up to 97.5%) and in medium coloration (99.5%). Vacuum concentration led to a dark-colored viscous solution that inhibited xylitol crystallization. This inhibition could be overcome by mixing the concentrated medium with a commercial xylitol solution. Such a strategy led to xylitol crystals with up to 95.9% purity. The crystallization yield (43.5%) was close to that observed when using commercial xylitol solution (51.4%). CONCLUSION: The experimental data demonstrate the feasibility of using ion-exchange resins followed by cooling in the presence of ethanol as a strategy to promote the fast recovery and purification of xylitol from hemicellulose-derived fermentation media. (c) 2008 Society of Chemical Industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Performance of different immobilized lipases in palm oil biodiesel synthesis. Optimized conditions for palm oil and ethanol enzymatic biodiesel synthesis were determined with different immobilized lipases SiO(2)-PVA-immobilized lipase from Pseudomonas fluorescens and acrylic resin-immobilized lipase, Novozym (R) 435, from Candida antartica, in solvent-free medium. A full factorial design assessed the influence of temperature (42 - 58 degrees C) and ethanol: palm oil (6:1 - 18:1) molar ratio on the transesterification yield. Main effects were adjusted by multiple regression analysis to linear models and the maximum transesterification yield was obtained at 42 degrees C and 18:1 ethanol: palm oil molar ratio. Mathematical models featuring total yield for each immobilized lipase were suitable to describe the experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work had as its main objective to contribute to the development of a biological detoxification of hemicellulose hydrolysates obtained from different biomass plants using Issatchenkia occidentalis CCTCC M 206097 yeast. Tests with hemicellulosic hydrolysate of sugarcane bagasse in different concentrations were carried out to evaluate the influence of the hydrolysate concentration on the inhibitory compounds removal from the sugarcane bagasse hydrolysate, without reduction of sugar concentration. The highest reduction values of inhibitors concentration and less sugar losses were observed when the fivefold concentrated hydrolysate was treated by the evaluated yeast. In these experiments it was found that the high sugar concentrations favored lower sugar consumption by the yeast. The highest concentration reduction of syringaldehyde (66.67%), ferulic acid (73.33%), furfural (62%), and 5-HMF (85%) was observed when the concentrated hydrolysate was detoxified by using this yeast strain after 24 h of experimentation. The results obtained in this work showed the potential of the yeast Issatchenkia occidentalis CCTCC M 206097 as detoxification agent of hemicellulosic hydrolysate of different biomass plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rice straw hemicellulosic hydrolysate was used as fermentation medium for ethanol production by Pichia stipitis NRRL Y-7124. Shaking bath experiments were initially performed aiming to establish the best initial xylose concentration to be used in this bioconversion process. In the sequence, assays were carried out under different agitation (100 to 200 rpm) and aeration ((V) under bar (flask)/V(medium) ratio varying from 2.5 to 5.0) conditions, and the influence of these variables on the fermentative parameters values (ethanol yield factor, Y(P/S); cell yield factor, Y(X/S); and ethanol volumetric productivity, Q(P)) was investigated through a 2(2) full-factorial design. Initial xylose concentration of about 50 g/l was the most suitable for the development of this process, since the yeast was able to convert substrate in product with high efficiency. The factorial design assays showed a strong influence of both process variables in all the evaluated responses. The agitation and aeration increase caused a deviation in the yeast metabolism from ethanol to biomass production. The best results (Y(P/S) = 0.37 g/g and Q(P) = 0.39 g/l. h) were found when the lowest aeration (2.5 V(flask)/V(medium) ratio) and highest agitation (200 rpm) levels were employed. Under this condition, a process efficiency of 72.5% was achieved. These results demonstrated that the establishment of adequate conditions of aeration is of great relevance to improve the ethanol production from xylose by Pichia stipitis, using rice straw hemicellulosic hydrolysate as fermentation medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Milkfat (MF)/soybean oil (SBO) blends ranging from 50% to 100% of milkfat (w/w) were enzymatically interesterified with a sn-1,3 specific lipase from Rhizopus oryzae immobilized on polysiloxane-polyvinyl alcohol matrix, in a solvent free medium. Interesterification progress was monitored by following the changes in the relative proportions of 50-carbon triacylglycerols (TAGS) to 44-carbon TAGs (50/44 ratio) in the reaction. The starting materials and products were also analyzed in terms of consistency measured in a texturometer. All reactions gave interesterified (IE) products with lower consistency than non-interesterified (NIE) MF:SBO blends and interesterification degree varied from 0.54 to 2.60 in 48 h reaction. The highest interesterification degree was achieved for 65:35 MF:SBO blends, which gave 76% reduction in the consistency. These results showed the potential of the immobilized lipase to change the TAGs profile of the MF:SBO blend allowing to obtain cold-spreadable milkfat. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipases from different sources, Pseudomonas fluorescens (AK lipase), Burkholderia cepacia (PS lipase), Penicillium camembertii (lipase G) and Porcine pancreas lipase (PPL), previously immobilized on epoxy SiO(2)-PVA, were screened for the synthesis of xylitol monoesters by esterification of the protected xylitol using oleic acid as acyl donor group. Among all immobilized derivatives, the highest esterification yield was achieved by P. camembertii lipase, showing to be attractive alternative to bulk chemical routes to satisfy increasing commercial demands. Further experiments were performed to determine the influence of fatty acids chain size on the reaction yield and the feasibility of using non-conventional heating systems (microwave and ultrasound irradiations) to enhance the reaction rate. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seven food grade commercially available lipases were immobilized by covalent binding on polysiloxane-polyvinyl alcohol (POS-PVA) hybrid composite and screened to mediate reactions of industrial interest. The synthesis of butyl butyrate and the interesterification of tripalmitin with triolein were chosen as model reactions. The highest esterification activity (240.63 mu M/g min) was achieved by Candida rugosa lipase, while the highest interesterification yield (31%, in 72 h) was achieved by lipase from Rhizopus oryzae, with the production of about 15 mM of the triglycerides C(50) and C(52). This lipase also showed a good performance in butyl butyrate synthesis, with an esterification activity of 171.14 mu M/g min. The results demonstrated the feasibility of using lipases from C. rugosa for esterification and R. oryzae lipase for both esterification and interesterification reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, pyrolysis-molecular beam mass spectrometry analysis coupled with principal components analysis and (13)C-labeled tetramethylammonium hydroxide thermochemolysis were used to study lignin oxidation, depolymerization, and demethylation of spruce wood treated by biomimetic oxidative systems. Neat Fenton and chelator-mediated Fenton reaction (CMFR) systems as well as cellulosic enzyme treatments were used to mimic the nonenzymatic process involved in wood brown-rot biodegradation. The results suggest that compared with enzymatic processes, Fenton-based treatment more readily opens the structure of the lignocellulosic matrix, freeing cellulose fibrils from the matrix. The results demonstrate that, under the current treatment conditions, Fenton and CMFR treatment cause limited demethoxylation of lignin in the insoluble wood residue. However, analysis of a water-extractable fraction revealed considerable soluble lignin residue structures that had undergone side chain oxidation as well as demethoxylation upon CMFR treatment. This research has implications for our understanding of nonenzymatic degradation of wood and the diffusion of CMFR agents in the wood cell wall during fungal degradation processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Fatty acid sugar esters are used as non-ionic surfactants in cosmetics, foodstuffs and pharmaceuticals. In particular, monoesters of xylitol have attracted industrial interest due to their outstanding biological activities. In this work, xylitol monoesters were obtained by chemoenzymatic synthesis, in which, first, xylitol was made soluble in organic solvent by chemo-protecting reaction, followed by enzymatic esterification reaction using different acyl donors. A commercial immobilized Candida antartica lipase was used as catalyst, and reactions with pure xylitol were carried out to generate data for comparison. RESULTS: t-BuOH was found to be the most suitable solvent to carry out esterification reactions with both pure and protected xylitol. The highest yields were obtained for reactions carried out with pure xylitol, but in this case by-products, such as di- and tri-esters isomers were formed, which required a multi-step purification process. For the systems with protected xylitol, conversions of 86%, 58% and 24% were achieved using oleic, lauric and butyric acids, respectively. The structures of the monoesters were confirmed by (13)C- and (1)H-NMR and microanalysis. CONCLUSION: The chemoenzymatic synthesis of xylitol monoesters avoided laborious downstream processing when compared with reactions performed with pure xylitol. Monoesters production from protected xylitol was shown to be a practical, economical, and clean route for this process, allowing a simple separation, because there are no other products formed besides xylitol monoesters and residual xylitol. (C) 2009 Society of Chemical Industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The hydrolysis of hemicellulosic material can provide liquor with high xylose concentration (which can be used as a fermentation medium) and phenolic compounds (Phs), potentially immunostimulating compounds. However, these hydrolysates must be detoxified in order to remove the Phs that can act as inhibitors in bioconversions. RESULTS: Aqueous two-phase systems composed of thermoseparating copolymers were used for rice straw hydrolysate detoxification. The hydrolysis process was able to promote chemical breakdown of 85% of the total hemicellulose content, 14% of the cellulose, and 2% of the lignin. The hydrolysate obtained contained 19.7 g L-1 of xylose and several phenolic compounds, such as vanillin, vanillic acid, ferullic acid, etc. The phenolics extraction was studied as a function of copolymer molar mass (1100 g mol(-1), 2000 g mol(-1) and 2800 g mol(-1)), their percentages (from 5% to 50%) and Phs initial concentration. Phenolic compounds extraction of around 80% was obtained under the following conditions: 20% (w/w) and 35% (w/w) copolymer 1100 g mol-1, 35% (w/w) copolymer 2000 g mol(-1) and 35% (w/w) copolymer 2800 g mol(-1) at 25 degrees C. CONCLUSIONS: The results demonstrated the viability of this method for the removal of Phs from rice straw hydrolysate, which has potential uses in bioconversion processes. (c) 2007 Society of Chemical Industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since hog raising concentrates a huge amount of swine manure in small areas, it is considered by the environmental government organizations to be one of the most potentially pollutant activities. Therefore the main objective of this research was to evaluate by operational criteria and removal efficiency, the performance of a Anaerobic Baffled Reactor (ABR), working as a biological pre-treatment of swine culture effluents. The physical-chemical analyses carried out were: total COD, BOD(5), total solids (TS), fix (TFS) and volatiles (TVS), temperature, pH, total Kjeldahl nitrogen, phosphorus, total acidity and alkalinity. The ABR unit worked with an average efficiency of 65.2 and 76.2%, respectively, concerning total COD and BOD(5), with a hydraulic retention time (HRT) about 15 hours. The results for volumetric organic loading rate (VOLR), organic loading rate (OLR) and hydraulic loading rate (HLR) were: 4.46 kg BOD m(-3) day(-1); 1.81 kg BOD(5) kg TVS(-1) day(-1) and 1.57 m(3) m(-3) day(-1), respectively. The average efficiency of the whole treatment system for total COD and BOD(5) removal were 66.5 and 77.8%, showing an adequate performance in removing die organic matter from swine wastewater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An alternative for ethanol production, is the use of vegetable waste, such as excess of banana production, that are evaluated in 2,400,000 t/year, which includes: residual banana fruit and lignocellulosic material. This paper analyzes the energetic and exergetic behavior to carry the process developed at laboratory scale to a plant processing of banana for the ethanol production, involving: growing and transport of the vegetable material, hydrolysis of banana fruit, sugar fermentation, ethanol distillation and utility plant. Finally, energy and exergy indicators are obtained. The results show a positive energy balance when banana fruit is used for ethanol production, but some process modification must be done looking for improving the exergetic efficiency in ethanol production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of ultraviolet radiation on the properties of poly(3-hydroxybutyrate) (PHB) was studied. The PHB investigated is produced from microbial fermentation using saccharose from sugarcane as the carbon source to the bacteria. The material was exposed to artificial UV-A radiation for 3, 6, 9 and 12 weeks. The photodegradation effect was followed by changes of molecular weight, of chemical and crystalline structures, of thermal, morphological, optical and mechanical properties, as well as of biodegradability. The experimental results showed that PHB undergoes both chain scission and cross-linking reactions, but the continuous decrease in its mechanical properties and the low amount of gel content upon UV exposure indicated that the scission reactions were predominant. Molar mass, melting temperature and crystallinity measurements for two layers of PHB samples with different depth suggested that the material has a strong degradation profile, which was attributed to its dark colour that restricted the transmission of light. Previous photodegradation initially delayed PHB biodegradability, due to the superficial increase in crystallinity seen with UV exposure. The possible reactions taking place during PHB photodegradation were presented and discussed in terms of the infrared and nuclear magnetic resonance spectra. A reference peak (internal standard) in the infrared spectra was proposed for PHB photodegradation. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphinic-derivative poly(styrene-co-divinylbenzene)-based on PS-DVB copolymers with different porosity degrees have been prepared by aromatic electrophilic substitution reaction using PCl(3)/AlCl(3) followed by base-promoted hydrolysis. The phosphorylation reaction was analyzed by infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetry (TG/DTG). In addition, the phosphorous content of the phosphorylated copolymers was determined by spectrophotometry using the method based on sodium molybdate reactant so that the extension of that modification could be assessed. The performance of the phosphorylated resins in the extraction of Pb(2+) from aqueous solutions in a batch system was also evaluated. The Pb(2+) content was determined by atomic absorption spectrometry (AAS). These materials presented excellent extraction capacity under the contact time of 30 min and pH 6.