21 resultados para vulkanismus, isotopische bestimmungen, magma quellen, datierung


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sphene-centered ocellar texture consists of leucocratic ocelli with sphene (titanite) crystals at the center, enclosed in a biotite-rich matrix. This texture has been recognized worldwide in hybrid intermediate rocks. On the basis of structural, petrological, and geochronological data from selected outcrops of the Variscan Ribadelago pluton (NW Iberian Massif), we propose that the ocelli were formed by migration and accumulation of a residual melt through a plagioclase- and biotite-dominated crystalline framework. At the late stage of crystallization, the magma acted as a hyperdense suspension and reacted to the pressure gradient caused by the regional stress field, entering the domain of grain-supported flow. Microstructures reveal that aligned crystal domains arose in the crystal framework from the shearing and compaction of the crystal mush and behaved as magmatic microshears. Relative displacement of adjacent crystal clusters along these microshears corresponded to the onset of Reynolds dilatancy that generated an expansion of the crystal mush, involving melt migration and pore aperture. The mineralogy of the ocelli, dominated by andesine and sphene, represents the composition of the migrating melt. The chemistry of this late, Ti-rich melt stems from the incongruent melting of biotite. Magmatic sphene from the ocelli yields a U-Pb age of 317 +/- 1 Ma, which represents the final crystallization of the hybridized magmatic system. Moreover, this texture offers an opportunity to better understand the rheological behavior of highly crystallized magmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lavas produced by the Timanfaya eruption of 1730-1736 (Lanzarote, Canary Islands) contain a great many sedimentary and metamorphic (metasedimentary), and mafic and ultramafic plutonic xenoliths. Among the metamorphosed carbonate rocks (calc-silicate rocks [CSRs]) are monomineral rocks with forsterite or wollastonite, as well as rocks containing olivine +/- orthopyroxene +/- clinopyroxene +/- plagioclase: their mineralogical compositions are identical to those of the mafic (gabbros) and ultramafic (dunite, wherlite and lherzolite) xenoliths. The (87)Sr/(16)Sr (around 0.703) and (143)Nd/(144)Nd (around 0.512) isotope ratios of the ultramafic and metasedimentary xenoliths are similar, while the (147)Sm/(144)Nd ratios show crustal values (0.13-0.16) in the ultramafic xenoliths and mantle values (0.18-0.25) in some CSRs. The apparent isotopic anomaly of the metamorphic xenoliths can be explained in terms of the heat source (basaltic intrusion) inducing strong isotopic exchange ((87)Sr/(86)Sr and (143)Nd/(144)Nd) between metasedimentary and basaltic rocks. Petrofabric analysis also showed a possible relationship between the ultramafic and metamorphic xenoliths. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic fabric and rock magnetism studies were performed on apparently isotropic granite facies from the main intrusion of the Lavras do Sul Intrusive Complex pluton (LSIC, Rio Grande do Sul, South Brazil). This intrusion is roughly circular (similar to 12 x 13.5 km), composed of alkali-calcic and alkaline granitoids, with the latter occupying the margin of the pluton. Magnetic fabrics were determined by applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). The two fabrics are coaxial. The parallelism between AMS and AARM tensors excludes the presence of a single domain (SD) effect on the AMS fabric of the granites. Several rock-magnetism experiments performed in one specimen from each sampled site show that for all sites the magnetic susceptibility is dominantly carried by ferromagnetic minerals, while mainly magnetite carries the magnetic fabrics. Lineations and foliations in the granite facies were successful determined by applying magnetic methods. Magnetic lineations are gently plunging and roughly parallel to the boundaries of the pluton facies, except at the few sites in the central facies which have a radial orientation pattern. In contrast, the magnetic foliations tend to follow the contacts between the different granite facies. They are gently outerward-dipping inside the pluton, and become either steeply southwesterly dipping or vertical towards its margin. The lack of solid-state and subsolidus deformations at outcrop scale and in thin sections precludes deformation after full crystallization of the pluton. This evidence allows us to interpret the observed magnetic fabrics as primary in origin (magmatic) acquired when the rocks were solidified as a result of processes reflecting magma flow. The foliation pattern displays a dome-shaped form for the main LSIC-pluton. However, the alkaline granites which outcrop in the southern part of the studied area have an inward-dipping foliation, and the steeply plunging magnetic lineation suggests that this area could be part of a feeder zone. The magma ascent probably occurred due to ring-diking. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic fabric and rock magnetism studies were performed on 25 unmetamorphosed mafic dikes of the Meso-Late Proterozoic (similar to 1.02 Ga) dike swarm from Salvador (Bahia State, NE Brazil). This area lies in the north-eastern part of the Sao Francisco Craton, which was dominantly formed/reworked during the Transamazonian orogeny (2.14-1.94 Ga). The dikes crop out along the beaches and in quarries around Salvador city, and cut across both amphibolite dikes and granulites. Their widths range from a few centimeters up to 30 m with an average of similar to 4 m, and show two main trends N 140-190 and N 100-120 with vertical dips. Magnetic fabrics were determined using both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). The magnetic mineralogy was investigated by many experiments including remanent magnetization measurements at variable low temperatures (10-300 K), Mossbauer spectroscopy, high temperature magnetization curves (25-700 degrees C) and scanning electron microscopy (SEM). The rock magnetism study suggests pseudo-single-domain magnetite grains carrying the bulk magnetic susceptibility and AARM fabrics. The magnetite grains found in these dikes are large and we discard the presence of single-domain grains. Its composition is close to stoichiometric with low Ti substitution, and its Verwey transition occurs around 120 K. The main AMS fabric recognized in the swarm is so-called normal, in which the K(max)-K(int) plane is parallel to the dike plane and the magnetic foliation pole K(min)) is perpendicular to it. This fabric is interpreted as due to magma flow, and analysis of the K m inclination permitted to infer that approximately 80% of the dikes were fed by horizontal or sub-horizontal flows (K(max) < 30 degrees). This interpretation is supported by structural field evidence found in five dikes. In addition, based on the plunge of K(max), two mantle sources could be inferred; one of them which fed about 80% of the swarm would be located in the southern part of the region, and the other underlied the Valeria quarry. However, for all dikes the AARM tensors are not coaxial with AMS fabrics and show a magnetic lineation (AARM(max)) oriented to N30-60E, suggesting that magnetite grains were rotated clockwise from dike plane. The orientation of AARM lineation is similar to the orientation of a system of faults in which the Salvador normal fault is the most important. These faults were formed during Cretaceous rifting in the Reconcavo-Tucano-jatoba assemblage that corresponds to an aborted intra-continental rift formed during the opening of the South Atlantic. Therefore, the AARM fabric found for the Salvador dikes is probably tectonic in origin and suggests that the dike swarm was affected by the important tectonic event responsible for the break-up of the Gondwanaland. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Borborema Province has three major subprovinces. The northern subprovince lies north of the Patos shear zone and is comprised of Paleoproterozoic cratonic basement with Archean nuclei, plus overlying Neoproterozoic supracrustal rocks and Brasiliano plutonic rocks. The central subprovince occurs between the Patos and Pernambuco shear zones and is mainly comprised of the Zona Transversal. The southern subprovince occurs between the Pernamabuco shear zone and the Sao Francisco craton and is comprised of a tectonic collage of various blocks, terranes, or domains ranging in age from Archean to Neoproterozoic. This report focuses on the Zona Transversal, especially on Brasiliano rocks for which we have the most new information. Paleoproterozoic gneisses with ages of 2.0-2.2 Ga occur discontinuously throughout the Zona Transversal. The Cariris Velhos suite consists of metavolcanic, metasedimentary, and metaplutonic rocks yielding U-Pb zircon ages of 995-960 Ma. This suite is mainly confined to a 100 km wide belt that extends for more than 700 km within the Alto Pajeu terrane. Sm-Nd model ages in metaigneous rocks cluster about 1.3-1.6 Ga, indicating that older crust was involved in genesis of their magmas. Brasiliano supracrustal rocks dominate the Pianco-Alto Brigida terrane, and they probably also constitute significant parts of the Alto Pajeu and Rio Capibaribe terranes. They are only slightly older than early stages of Brasiliano plutonism, with detrital zircon ages at least as young as 620 Ma; most T(DM) ages range from 1.2 to 1.6 Ga. Brasiliano plutons range from ca. 640 to 540 Ma, and their T(DM) ages range from 1.2 to 2.5 Ga. Previous workers have shown significant correlations among U-Pb ages, Sm-Nd model ages, petrology, and geochemistry, and we are able to reinforce and extend these correlations. Stage I plutons formed 640 -610 Ma and have T(DM) ages less than 1.5 Ga. Stage 11 (610-590 Ma) contains few plutons, but coincides with the peak of compressional deformation, metamorphism, and formation of migmatites. Stage III plutons (590 to ca. 575 Ma) have older T(DM) ages (ca. 1.8-2.0 Ga), as do Stage IV plutons (575 to ca. 550 Ma; T(DM) from 1.9 to 2.4 Ga). Stage III plutons formed during the transition from compressional to transcurrent deformation, while Stage IV plutons are mainly post-tectonic. Stage V plutons (550-530 Ma) are commonly undeformed (except along younger shear zones) and have A-type geochemistry. The five stages have distinct geochemical properties, which suggest that the tectonic settings evolved from early, arc-related magma-genesis (Stage I) to within-plate magma-genesis (Stage V), with perhaps some intermediate phases of extensional environments. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The whole Valle Fertil-La Huerta section appears as a calc-alkaline plutonic suite typical of a destructive plate margin. New Sr and Nd isotopic whole-rock data and published whole-rock geochemistry suggest that the less-evolved intermediate (dioritic) rocks can be derived by magmatic differentiation, mainly by hornblende + plagioclase +/- Fe-Ti oxide fractional crystallization, from mafic (gabbroic) igneous precursors. Closed-system differentiation, however, cannot produce the typical intermediate (tonalitic) and silicic (granodioritic) plutonic rocks, which requires a preponderant contribution of crustal components. Intermediate and silicic plutonic rocks from Valle Fertil-La Huerta section have formed in a plate subduction setting where the thermal and material input of mantle-derived magmas promoted fusion of fertile metasedimentary rocks and favored mixing of gabbroic or dioritic magmas with crustal granitic melts. Magma mixing is observable in the field and evident in variations of chemical elemental parameters and isotopic ratios, revealing that hybridization coupled with fractionation of magmas took place in the crust. Consideration of the whole-rock geochemical and isotopic data in the context of the Famatinian-Puna magmatic belt as a whole demonstrates that the petrologic model postulated for the Sierra Valle Fertil-La Huerta section has the potential to explain the generation of plutonic and volcanic rocks across the Early Ordovician paleoarc from central and northwestern Argentina. As the petrologic model does not require the intervention of old Precambrian continental crust, the nature of the basement on which thick accretionary turbiditic sequences were deposited remains a puzzling aspect. Discussion in this paper provides insights into the nature of magmatic source rocks and mechanisms of magma generation in Cordilleran-type volcano-plutonic arcs of destructive plate margins. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The count intercept is a robust method for the numerical analysis of fabrics Launeau and Robin (1996). It counts the number of intersections between a set of parallel scan lines and a mineral phase, which must be identified on a digital image. However, the method is only sensitive to boundaries and therefore supposes the user has some knowledge about their significance. The aim of this paper is to show that a proper grey level detection of boundaries along scan lines is sufficient to calculate the two-dimensional anisotropy of grain or crystal distributions without any particular image processing. Populations of grains and crystals usually display elliptical anisotropies in rocks. When confirmed by the intercept analysis, a combination of a minimum of 3 mean length intercept roses, taken on 3 more or less perpendicular sections, allows the calculation of 3-dimensional ellipsoids and the determination of their standard deviation with direction and intensity in 3 dimensions as well. The feasibility of this quick method is attested by numerous examples on theoretical objects deformed by active and passive deformation, on BSE images of synthetic magma flow, on drawing or direct analysis of thin section pictures of sandstones and on digital images of granites directly taken and measured in the field. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Major Gercino Shear Zone is one of the NE-SW lineaments that separate the Neoproterozoic Dom Feliciano Belt, of Brazil and Uruguay, into two different domains: a northwestern supracrustal domain from a southeastern granitoid domain. The shear zone, striking NE, is composed of protomylonites to ultramylonites with mainly dextral kinematic indicators. In Santa Catarina State, southern Brazil, the shear zone is composed of two mylonite belts. The mylonites have mineral orientations produced under greenschist fades conditions at a high strain rate. Strong flattening and coaxial deformation indicate the transpressive character, while the role of pure shear is emphasized by the orientation of the mylonite belts in relation to the inferred stress field component. The quartz microstructures point out that different dynamic recrystallization regimes and crystal plasticity were the dominant mechanisms of deformation during the mylonitization process. Additionally, the fabrics suggest that the glide systems are activated for deformation conditions compatible with the metamorphism in the middle greenschist facies. Elongated granitoid intrusions belonging to two petrographically, geochemically and isotopically distinct rock associations occur between the two mylonite belts. The structures observed in the granites result from a deformation range from magmatic to solid-state conditions points to a continuum of magma straining during and just after its crystallization. Conventional U-Pb analysis of multi-crystal zircon fractions yielded essentially identical ages of 609 +/- 16 Ma and 614 +/- 2 Ma for the two granitic associations, and constrain the transpressive phase of the shear zone. K-Ar ages of biotites between 585 and 560 Ma record the slow cooling and uplift of the intrusions. Some K-Ar ages of micas in regional mylonites are similar, suggesting that thermo-tectonic activity was intense up to this time, probably related to the agglutination of the granite belt to the supracrustal belt NW of the MGSZ. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Santa Rosa and Sauce Guacho plutons are two post-collisional peraluminous Late Devonian to Early Carboniferous leucogranites that intruded the banded schists of the Ancasti Formation. The leucogranites are composed of microcline phenocrysts along with quartz, plagioclase, muscovite, biotite, ilmenite, tourmaline, apatite, monazite and zircon. Their geochemical composition is consistent with S-type granites and mineralogically they belong to MPG granites (muscovite-peraluminous granites). It is proposed that granite magma generation was related to shear zones that concentrated fluids in the metasedimentary crust during a collision or transcurrent tectonics. U-Pb analyses on monazite gave an age of 369.8 +/- 5.3 Ma, while Sm/Nd isotopic data yield epsilon(Nd(t)) values of -5.3 for Sauce Guacho and -5.7 for Santa Rosa indicating crustal provenance. Nd model ages between 1,544 and 1,571 Ma are within the range of magmatic rocks from the Lower Ordovician Famatinian Arc in the Central Sierras Pampeanas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The studied sector of the central Ribeira Fold Belt (SE Brazil) comprises metatexites, diatexites, charnockites and blastomylonites. This study integrates petrological and thermochronological data in order to constrain the thermotectonic and geodynamic evolution of this Neoproterozoic-Ordovician mobile belt during Western Gondwana amalgamation. New data indicate that after an earlier collision stage at similar to 610 Ma (zircon, U-Pb age), peak metamorphism and lower crust partial melting, coeval with the main regional high grade D(1) thrust deformation, occurred at 572-562 Ma (zircon, U-Pb ages). The overall average cooling rate was low (<5 degrees C/Ma) from 750 to 250 degrees C (at similar to 455 Ma; biotite-WR Rb-Sr age), but disparate cooling paths indicate differential uplift between distinct lithotypes: (a) metatexites and blastomylonites show a overall stable 3-5 degrees C/Ma cooling rate; (b) charnockites and associated rocks remained at T>650 degrees C during sub-horizontal D(2) shearing until similar to 510-470 Ma (garnet-WR Sm-Nd ages) (1-2 degrees C/Ma), being then rapidly exhumed/cooled (8-30 degrees C/Ma) during post-orogenic D(3) deformation with late granite emplacement at similar to 490 Ma (zircon, U-Pb age). Cooling rates based on garnet-biotite Fe-Mg diffusion are broadly consistent with the geochronological cooling rates: (a) metatexites were cooled faster at high temperatures (6 degrees C/Ma) and slowly at low temperatures (0.1 degrees C/Ma), decreasing cooling rates with time; (b) charnockites show low cooling rates (2 degrees C/Ma) near metamorphic peak conditions and high cooling rates (120 degrees C/Ma) at lower temperatures, increasing cooling rates during retrogression. The charnockite thermal evolution and the extensive production of granitoid melts in the area imply that high geothermal gradients were sustained fora long period of time (50-90 Ma). This thermal anomaly most likely reflects upwelling of asthenospheric mantle and magma underplating coupled with long-term generation of high HPE (heat producing elements) granitoids. These factors must have sustained elevated crustal geotherms for similar to 100 Ma, promoting widespread charnockite generation at middle to lower crustal levels. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early Cretaceous (similar to 129 Ma) silicic rocks crop out in SE Uruguay between the Laguna Merin and Santa Lucia basins in the Lascano, Sierra Sao Miguel. Salamanca and Minas areas They are mostly rhyolites with minor quartz-trachytes and are nearly contemporaneous with the Parana-Etendeka igneous province and with the first stages of South Atlantic Ocean opening A strong geochemical variability (particularly evident from Rb/Nb, Nb/Y trace element ratios) and a wide range of Sr-Nd isotopic ratios ((143)Nd/(144)Nd((129)) = 0.51178-0.51209, (87)Sr/(86)Sr((129)) = 0.70840-0.72417) characterize these rocks Geochemistry allows to distiniguish two compositional groups, corresponding to the north-eastern (Lascano and Sierra Sao Miguel, emplaced on the Neo-Proterozoic southern sector of the Dom Feliciano mobile belt) and south-eastern localities (Salamanca, Minas, emplace on the much older (Archean) Nico Perez teriane or on the boundary between the Dom Feliciano and Nico Perez termites) These compositional differences between the two groups are explained by variable mantle source and crust contributions. The origin of the silicic magmas is best explained by complex processes involving assimilation and fractional crystallization and mixing of a basaltic magma with upper crustal lithologies, for Lascano and Sierra Sao Miguel rhyolites. In the Salamanea and Minas rocks genesis, a stronger contribution from lower crust is indicated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over 20 lamprophyre dykes, varying in width between a few centimeters and several meters, have been identified in central Sierra Norte - Eastern Pampean Ranges, Cordoba, Argentina. Their mineralogy and chemistry indicate that they are part of the calc-alkaline lamprophyres clan (CAL). They contain phenocrysts of magnesiohomblende +/- augite set in a groundmass of magnesiohornblende, calcic-plagioclase, alkali feldspar, and opaque minerals, which designate them as spessartite-type lamprophyres. Alteration products include chlorite, calcite and iron oxides after malfic phenocrysts, though some are partially replaced by actinolite. Feldspars are replaced by carbonate and clay minerals. The dykes are relatively primitive, and show restricted major element variation (SiO(2) 51.1-55.3 wt.%, Al(2)O(3) 12-16.6 wt.%, total alkalies 1.5-4.7 wt.%), high Mg# (55-77), high Cr contents (27-988 ppm) and moderate to high Ni contents (60-190 ppm). Lamprophyre LILE (e.g. Rb averages 110 ppm, Sr 211-387 ppm, Ba 203-452 ppm) are high relative to HFSE (e.g., Ta 0.2-1.6 ppm, Nb 4-11 ppm, Y 17-21 ppm), and are enriched in LREE (30-70 times chondrite). They are characterized by relatively high (208)Pb/(204)Pb (38.8-39.9), (207)Pb/(204)Pb(similar to 15.7), and (206)Pb/(204)Pb (18.7-20.1), combined with low (epsilon)epsilon(Nd) (-4.69 to -1.52) and a relative moderately high ((87)Sr/(86)Sr)(i) of 0.7055-0.7074. The Rb-Sr whole rock isochron indicates an Early Ordovician age of 485 +/- 25 Ma. The calculated T(DM) (1.7 Ga) suggests that these rocks appear to have originated from a reservoir that was created during a mantle metasomatism event related to the Pampean orogeny. The Sierra Norte lamprophyres show affinities with a subduction-related magma in an active continental margin. Their geochemical and isotopic features suggest a multicomponent source, composed of enriched mantle material variably contaminated by crustal components. The lamprophyric suite emplacement occurred at the dawning stage of the Pampean orogeny, in a regional post-collisional extensional setting developed in the Sierra Norte-Ambargasta batholith (SNAB) in Early Ordovician times. (C) 2008 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Niquelandia complex is a Neoproterozoic mafic-ultramafic intrusion resulting from fractional crystallization of primary picritic basalt intrusions. It consists of two layered sequences: a lower and larger one (LS), where four stratigraphic units exhibit an upward decrease of ultramafic layers and increase of gabbroic layers; an upper, smaller sequence (US), separated from LS by a high-temperature shear zone and consisting of two stratigraphic units (gabbros + anorthosites and amphibolites). Nd and Sr isotopic analyses and rare earth element (REE) profiles provide evidence that the complex suffered important crustal contamination. The LS isotopic array trends from a DM region with positive epsilon Nd and moderately positive epsilon Sr towards a field occupied by crustal xenoliths, especially abundant in the upper LS (negative epsilon Nd and large, positive E:Sr). Each LS stratigraphic unit is distinct from the next underlying unit, showing lower epsilon Nd and higher epsilon Sr, suggesting inputs of fresh magma and mixing with the contaminated, residual magma. The US is characterised by a relatively high variation of epsilon Nd and constant epsilon Sr. REE patterns vary within each unit from LREE depleted to LREE enriched in the samples having lower epsilon Nd and higher epsilon Sr. The contamination process has been modelled by using the EC-AFC algorithms from [Spera, F.J., Bohrson, W.A., 2001. Energy-constrained open-system magmatic processes 1: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrology 42, 999-1018]. The differences between the LS and US isotopic arrays are consistent with contamination by the same crustal component, provided that its melting degree was higher in LS than in US. The different degrees of anatexis are explained by the heat budget released from the magma, higher in LS (because of its larger mass) than in US. Comparison of the correlations between isotopes and incompatible trace element ratios of the models and of the gabbros shows some differences, which are demonstrably related with the variable amount of cumulus phases and trapped melt in the gabbros. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Jaguarao stratoid dacites (Rio Grande do Sul, Brazil) are limited in areal extent, are comprised of about 3.2 km(3) of preserved erupted material, and outcrop only in areas of the region underlain by mylonitic and ultramylonitic rocks. They are S-type volcanic rocks containing cordierite, orthopyroxene, plagioclase, and ilmenite as liquidus phases, and partially melted granite, gneiss, and migmatite enclaves that are very similar to the Precambrian basement rocks. The Jaguarao lavas have distinct geochemical signatures and Sr-Nd isotopes with respect to other volcanic rocks of the region. Available geochronological data for Jaguarao dacites range between 157 +/- 5 Ma and 139.6 +/- 7.4 Ma. Considering the errors, the younger ages obtained for Jaguarao lavas overlap the 138-128 Ma age of rocks of the Serra Geral Group, and thus indicate that the dacites were erupted prior to the break-up of Gondwana in this region. Petrographic, mineralogical, and petrochemical data, as well as the tectonic context of the Jaguarao lavas, suggest that magma genesis was linked, at least in part, to friction melts. The dacitic magma was generated by partial melting reactions involving biotite breakdown in a dominantly quartz-feldspathic source terrane, leaving a granulite facies residue in subsurface. These melts were probably generated as a consequence of crustal thinning linked to simple shear extension just prior to Gondwana break-up and rifting of the southern Atlantic Ocean. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Felsic microgranular enclaves with structures indicating that they interacted in a plastic state with their chemically similar host granite are abundant in the Maua Pluton, SE Brazil. Larger plagioclase xenocrysts are in textural disequilibrium with the enclave groundmass and show complex zoning patterns with partially resorbed An-rich cores (locally with patchy textures) surrounded by more sodic rims. In situ laser ablation-(multi-collector) inductively coupled plasma mass spectrometry trace element and Sr isotopic analyses performed on the plagioclase xenocrysts indicate open-system crystallization; however, no evidence of derivation from more primitive basic melts is observed. The An-rich cores have more radiogenic initial Sr isotopic ratios that decrease towards the outermost part of the rims, which are in isotopic equilibrium with the matrix plagioclase. These profiles may have been produced by either (1) diffusional re-equilibration after rim crystallization from the enclave-forming magma, as indicated by relatively short calculated residence times, or (2) episodic contamination with a decrease of the contaminant ratio proportional to the extent to which the country rocks were isolated by the crystallization front. Profiles of trace elements with high diffusion coefficients would require unrealistically long residence times, and can be modeled in terms of fractional crystallization. A combination of trace element and Sr isotope data suggests that the felsic microgranular enclaves from the Maua Pluton are the products of interaction between end-member magmas that had similar compositions, thus recording `self-mixing` events.