51 resultados para soil microbial activity
Resumo:
The effects of drying and rewetting (DRW) have been studied extensively in non-saline soils, but little is known about the impact of DRW in saline soils. An incubation experiment was conducted to determine the impact of 1-3 drying and re-wetting events on soil microbial activity and community composition at different levels of electrical conductivity in the saturated soil extract (ECe) (ECe 0.7, 9.3, 17.6 dS m(-1)). A non-saline sandy loam was amended with NaCl to achieve the three EC levels 21 days prior to the first DRW; wheat straw was added 7 days prior to the first DRW. Each DRW event consisted of 1 week drying and 1 week moist (50% of water holding capacity, WHC). After the last DRW, the soils were maintained moist until the end of the incubation period (63 days after addition of the wheat straw). A control was kept moist (50% of WHC) throughout the incubation period. Respiration rates on the day after rewetting were similar after the first and the second DRW, but significantly lower after the third DRW. After the first and second DRW, respiration rates were lower at EC17.6 compared to the lower EC levels, whereas salinity had little effect on respiration rates after the third DRW or at the end of the experiment when respiration rates were low. Compared to the continuously moist treatment, respiration rates were about 50% higher on day 15 (d15) and d29. On d44, respiration rates were about 50% higher at EC9.7 than at the other two EC levels. Cumulative respiration was increased by DRW only in the treatment with one DRW and only at the two lower EC levels. Salinity affected microbial biomass and community composition in the moist soils but not in the DRW treatments. At all EC levels and all sampling dates, the community composition in the continuously moist treatment differed from that in the DRW treatments, but there were no differences among the DRW treatments. Microbes in moderately saline soils may be able to utilise substrates released after multiple DRW events better than microbes in non-saline soil. However, at high EC (EC17.6), the low osmotic potential reduced microbial activity to such an extent that the microbes were not able to utilise substrate released after rewetting of dry soil.
Resumo:
The application of tannery sludge to soils is a form of recycling; however, few studies have examined the impacts of this practice on soil microbial properties. We studied effects of two applications (2006 and 2007) of tannery sludge (with a low chromium content) on the structure of the bacterial community and on the microbial activity of soils. We fertilized an agricultural area in Rolandia, Parana state, Brazil with different doses of sludge based on total N content, which ranged from 0 to 1200 kg N ha(-1). Sludge remained on the soil surface for three months before being plowed. Soils were sampled seven times during the experiment. Bacterial community structure, assessed by denaturing gradient gel electrophoresis (DGGE), was modified by the application of tannery sludge. Soon after the first application, there was clear separation between the bacterial communities in different treatments, such that each dose of sludge was associated with a specific community. These differences remained until 300 days after application and also after the second sludge application, but 666 days after the beginning of the experiment no differences were found in the bacterial communities of the lowest doses and the control. The principal response curve (PRC) analysis showed that the first sludge application strongly stimulated biological activity even 300 days after application. The second application also stimulated activity, but at a lower magnitude and for a shorter time, given that 260 days after the second application there was no difference in biological activity among treatments. PRC also showed that the properties most influenced by the application of tannery sludge were enzymatic activities related to N cycling (asparaginase and urease). The redundancy analysis (RDA) showed that tannery sludge`s influence on microbial activity is mainly related to increases in inorganic N and soil pH. Results showed that changes in the structure of the bacterial community in the studied soils were directly related to changes of their biological activity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Agricultural reuse of treated sewage effluent (TSE) is an environmental and economic practice; however, little is known about its effects on the characteristics and microbial function in tropical soils. The effect of surplus irrigation of a pasture with TSE, in a period of 18 months, was investigated, considering the effect of 0% surplus irrigation with TSE as a control. In addition, the experiment consisted of three surplus treatments (25%, 50%, and 100% excess) and a nonirrigated pasture area (SE) to compare the soil microbial community level physiological profiles, using the Biolog method. The TSE application increased the average substrate consumption of the soil microbial community, based on the kinetic parameters of the average well color development curve fitting. There were no significant differences between the levels of surplus irrigation treatments. Surplus TSE pasture irrigation caused minor increases in the physiological status of the soil microbial community but no detectable damage to the pasture or soil.
Resumo:
Fire is common in savannas but its effects on soil are poorly understood. We analyzed long-term effects of fire on surface soil of an open Brazilian savanna (campo sujo) in plots submitted to different fire regimes during 18 years. The five fire regimes were: unburned, quadrennial fires in middle dry season, and biennial fires in early, middle or late dry season. Soil was collected during the wet and the middle dry season of 2008, and analyzed for pH, organic matter, total N, potential acidity, exchangeable cations and available P, S, Mn, Cu, Zn and Fe. We applied multivariate analysis to search for patterns related to fire regimes, and to local climate, fuel, and fire behavior. Spearman test was used to establish correlations between soil variables and the multivariate analysis gradient structure. Seasonal differences were tested using t-test. We found evidence of long-term fire effects: the unburned plot was segregated mainly by lower soil pH; the quadrennial plot was also segregated by lower soil pH and higher amount of exchangeable cations; the time of burning during the dry season in biennial plots did not significantly affect soil availability of nutrients. Differences in elements amounts due to the season of soil sampling (wet or dry) were higher than due to the effect of fires. Higher availability of nutrients in the soil during the wet season was probably related to higher nutrient inputs via rainfall and higher microbial activity.
Resumo:
The short-term effects of surface lime application and black oat (Avena strigosa Schreb.) residues, with or without N fertilization, were evaluated in a long-term no-till (NT) system on a sandy clay loam, a kaolinitic, thermic Typic Hapludox from the state of Parana, Brazil. The main plot treatments were: control and dolomitic lime applied on soil surface at 8 Mg ha(-1). Three treatments with crop residues were evaluated on the subplots: (i) fallow, (ii) black oat residues, and (iii) black oat residues aft er N fertilization at 180 kg ha(-1). Black oat dry biomass was not affected by the treatments during 3 yr. Surface liming increased soil pH, microbial biomass, microbial activity, and bacterial/fungal ratio at the soil surface (0-5 cm), resulting in increased amino acid turnover, water-soluble humic substances formation, and N mineralization and nitrification. While the application of black oat did increase the soil pH, overall it had much less effect on soil biological processes and C and N pools than did lime. We concluded that black oat cannot replace the need for lime to optimize crop production in these tropical NT systems. In the long term, however, black oat should aid in the amelioration of acidity and replenishment of soil organic C pools and should help reduce erosion. Overall, this study suggests that overapplication of inorganic fertilizer N may occur in some tropical NT systems. Further experiments are required in NT systems to investigate the use of slow-release N fertilizers in combination with lime and black oat as a mechanism to reduce acidification and promote sustainability.
Resumo:
The controlled disposal of tannery sludge in agricultural soils is a viable alternative for recycling such waste; however, the impact of this practice on the arbuscular mycorrhizal fungi (AMF) communities is not well understood. We studied the effects of low-chromium tannery sludge amendment in soils on AMF spore density, species richness and diversity, and root colonization levels. Sludge was applied at four doses to an agricultural field in Rolandia, Parana state, Brazil. The sludge was left undisturbed on the soil surface and then the area was harrowed and planted with corn. The soil was sampled at four intervals and corn roots once within a year (2007/2008). AMF spore density was low (1 to 49 spores per 50 cm(3) of soil) and decreased as doses of tannery sludge increased. AMF root colonization was high (64%) and unaffected by tannery sludge. Eighteen AMF species belonging to six genera (Acaulospora, Glomus, Gigaspora, Scutellospora, Paraglomus, and Ambispora) were recorded. At the sludge doses of 9.0 and 22.6 Mg ha(-1), we observed a decrease in AMF species richness and diversity, and changes in their relative frequencies. Hierarchical grouping analysis showed that adding tannery waste to the soil altered AMF spore community in relation to the control, modifying the mycorrhizal status of soil and selectively favoring the sporulation of certain species.
Resumo:
Sewage sludge from wastewater treatment contains organic matter and plant nutrients that can play an important role in agricultural production and the maintenance of soil fertility, The present study has aimed to evaluate the degree of humification following sewage sludge application of soil organic matter by laser-induced fluorescence and humic acids using ultraviolet-visible fluorescence, and including comparison with Fourier-transform infrared spectroscopy and elemental analysis. Sewage sludge applications to the soil caused a decrease in the degree of humification of the soil organic matter and humic acids for both a Typic Eutrorthox (clayey) soil and a Typic Haplorthox (sandy) soil of around 14 and 27%, respectively. This effect is probably clue to incorporation of newly formed humic substances from the sewage sludge into the characteristics of less humified material, and to the indigenous soil humic substances. The minor alterations observed in the clay soil probably occurred due to both the greater mineral association, which better stabilized the indigenous soil organic matter, and the higher microbial activity in this soil, which accelerated sewage sludge mineralization. Sewage sludge applications increased the C content for the clay and sandy soils by 7.4 and 15.4 g kg(-1), respectively, suggesting a positive effect on these two soils.
Resumo:
The objective of this study was to evaluate the effect of particle size and concentration of poly(F.-caprolactone) and adipate modified starch blend on mineralization in soils with differing textures, comparing it with polyethylene under the same experimental conditions. Two soil types were used: a Kandiudalfic Eutrudox with a clayey texture and an Arenic Hapludult with a sandy texture. The two different plastic specimens were incorporated in the form of plastic films with three increasing particle sizes and six doses, from 0 to 2.5 mg C g(-1) soil. Each plastic dose was incorporated into 200 g of soil placed in a hermetically closed jar at 28 degrees C, and incubated for a 120-day period to determine CO(2) evolution. Once again it was confirmed that polyethylene is almost non-biodegradable, in contrast to PCL/S, which can be defined as a biodegradable material. Soil texture affected the mineralization kinetics of the plastic specimens, with higher values for the clayey soil. No changes in soil microbial biomass-C or -N were observed by adding polyethylene and PCL/S to the soil. Also, no significant differences were observed on seed emergence and development of rice seedlings (Oryza sativa L.) in plastic modified soil. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Pseudomonas putida strain P9 is a novel competent endophyte from potato. P9 causes cultivar-dependent suppression of Phytophthora infestans. Colonization of the rhizoplane and endosphere of potato plants by P9 and its rifampin-resistant derivative P9R was studied. The purposes of this work were to follow the fate of P9 inside growing potato plants and to establish its effect on associated microbial communities. The effects of P9 and P9R inoculation were studied in two separate experiments. The roots of transplants of three different cultivars of potato were dipped in suspensions of P9 or P9R cells, and the plants were planted in soil. The fate of both strains was followed by examining colony growth and by performing PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Colonies of both strains were recovered from rhizoplane and endosphere samples of all three cultivars at two growth stages. A conspicuous band, representing P9 and P9R, was found in all Pseudomonas PCR-DGGE fingerprints for treated plants. The numbers of P9R CFU and the P9R-specific band intensities for the different replicate samples were positively correlated, as determined by linear regression analysis. The effects of plant growth stage, genotype, and the presence of P9R on associated microbial communities were examined by multivariate and unweighted-pair group method with arithmetic mean cluster analyses of PCR-DGGE fingerprints. The presence of strain P9R had an effect on bacterial groups identified as Pseudomonas azotoformans, Pseudomonas veronii, and Pseudomonas syringae. In conclusion, strain P9 is an avid colonizer of potato plants, competing with microbial populations indigenous to the potato phytosphere. Bacterization with a biocontrol agent has an important and previously unexplored effect on plant-associated communities.
Resumo:
Microbial community composition was examined in two soil types, Anthrosols and adjacent soils, sampled from three locations in the Brazilian Amazon. The Anthrosols, also known as Amazonian dark earths, are highly fertile soils that are a legacy of pre-Columbian settlement. Both Anthrosols and adjacent soils are derived from the same parent material and subject to the same environmental conditions, including rainfall and temperature; however, the Anthrosols contain high levels of charcoal-like black carbon from which they derive their dark color. The Anthrosols typically have higher cation exchange capacity, higher pH, and higher phosphorus and calcium contents. We used culture media prepared from soil extracts to isolate bacteria unique to the two soil types and then sequenced their 16S rRNA genes to determine their phylogenetic placement. Higher numbers of culturable bacteria, by over two orders of magnitude at the deepest sampling depths, were counted in the Anthrosols. Sequences of bacteria isolated on soil extract media yielded five possible new bacterial families. Also, a higher number of families in the bacteria were represented by isolates from the deeper soil depths in the Anthrosols. Higher bacterial populations and a greater diversity of isolates were found in all of the Anthrosols, to a depth of up to 1 m, compared to adjacent soils located within 50-500 m of their associated Anthrosols. Compared to standard culture media, soil extract media revealed diverse soil microbial populations adapted to the unique biochemistry and physiological ecology of these Anthrosols.
Resumo:
In the present work, the anticariogenic activities of three pimarane-type diterpenes obtained by fungal biotransformation were investigated. Among these metabolites, ent-8(14), 15-pimaradien-19-ol was the most active compound, displaying very promising MIC values (ranging from 1.5 to 4.0 mu g mL(-1)) against the main microorganisms responsible for dental caries: Streptococcus salivarius, S. sobrinus, S. mutans, S. mitis, S. sanguinis, and Lactobacillus casei. Time kill assays performed with ent-8(14), 15-pimaradien-19-ol against the primary causative agent S. mutans revealed that this compound only avoids growth of the inoculum in the first 12 h (bacteriostatic effect). However, its bactericidal effect is clearly noted thereafter (between 12 and 24 h). The curve profile obtained by combining ent-8(14), 15-pimaradien-19-ol and chlorhexidine revealed a significant reduction in the time necessary for killing S. mutans compared with each of these two chemicals alone. However, no synergistic effect was observed using the same combination in the checkerboard assays against this microorganism. In conclusion, our results point out that ent-8(14), 15-pimaradien-19-ol is an important metabolite in the search for new effective anticariogenic agents.
Resumo:
No-tillage mulch-based (NTM) cropping systems have been widely adopted by farmers in the Brazilian savanna region (Cerrado biome). We hypothesized that this new type of management should have a profound impact on soil organic carbon (SOC) at regional scale and consequently on climate change mitigation. The objective of this study was thus to quantify the SOC storage potential of NTM in the oxisols of the Cerrado using a synchronic approach that is based on a chronosequence of fields of different years under NTM. The study consisted of three phases: (1) a farm/cropping system survey to identify the main types of NTM systems to be chosen for the chronosequence; (2) a field survey to identify a homogeneous set of situations for the chronosequence and (3) the characterization of the chronosequence to assess the SOC storage potential. The main NTM system practiced by farmers is an annual succession of soybean (Glycine max)or maize (Zea mays) with another cereal crop. This cropping system covers 54% of the total cultivated area in the region. At the regional level, soil organic C concentrations from NTM fields were closely correlated with clay + silt content of the soil (r(2) = 0.64). No significant correlation was observed (r(2) = 0.07), however, between these two variables when we only considered the fields with a clay + silt content in the 500-700 g kg(-1) range. The final chronosequence of NTM fields was therefore based on a subsample of eight fields, within this textural range. The SOC stocks in the 0-30 cm topsoil layer of these selected fields varied between 4.2 and 6.7 kg C m(-2) and increased on average (r(2) = 0.97) with 0.19 kg C m(-2) year(-1). After 12 years of NTM management, SOC stocks were no longer significantly different from the stocks under natural Cerrado vegetation (p < 0.05), whereas a 23-year-old conventionally tilled and cropped field showed SOC stocks that were about 30% below this level. Confirming our hypotheses, this study clearly illustrated the high potential of NTM systems in increasing SOC storage under tropical conditions, and how a synchronic approach may be used to assess efficiently such modification on farmers` fields, identifying and excluding non desirable sources of heterogeneity (management, soils and climate). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO(2) and N(2)O fluxes close to similar to 300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay-rich forest sites in central Amazonia. We found that soil CO(2) fluxes were 38% higher near large trees than at control sites >10 m away from any tree (P < 0.0001). After adjusting for large tree presence, a multiple linear regression of soil temperature, bulk density, and liana DBH explained 19% of remaining CO(2) flux variability. Soil N(2)O fluxes adjacent to Caryocar villosum, Lecythis lurida, Schefflera morototoni, and Manilkara huberi were 84%-196% greater than Erisma uncinatum and Vochysia maxima, both Vochysiaceae. Tree species identity was the most important explanatory factor for N(2)O fluxes, accounting for more than twice the N(2)O flux variability as all other factors combined. Two observations suggest a mechanism for this finding: (1) sugar addition increased N(2)O fluxes near C. villosum twice as much (P < 0.05) as near Vochysiaceae and (2) species mean N(2)O fluxes were strongly negatively correlated with tree growth rate (P = 0.002). These observations imply that through enhanced belowground carbon allocation liana and tree species can stimulate soil CO(2) and N(2)O fluxes (by enhancing denitrification when carbon limits microbial metabolism). Alternatively, low N(2)O fluxes potentially result from strong competition of tree species with microbes for nutrients. Species-specific patterns in CO(2) and N(2)O fluxes demonstrate that plant species can influence soil biogeochemical processes in a diverse tropical forest.
Resumo:
1. Little is known about the role of deep roots in the nutrition of forest trees and their ability to provide a safety-net service taking up nutrients leached from the topsoil. 2. To address this issue, we studied the potential uptake of N, K and Ca by Eucalyptus grandis trees (6 years of age - 25 m mean height), in Brazil, as a function of soil depth, texture and water content. We injected NO(3)(-)- (15)N, Rb(+) (analogue of K(+)) and Sr(2+) (analogue of Ca(2+)) tracers simultaneously in a solution through plastic tubes at 10, 50, 150 and 300 cm in depth in a sandy and a clayey Ferralsol soil. A complete randomized design was set up with three replicates of paired trees per injection depth and soil type. Recently expanded leaves were sampled at various times after tracer injection in the summer, and the experiment was repeated in the winter. Soil water contents were continuously monitored at the different depths in the two soils. 3. Determination of foliar Rb and Sr concentrations and (15)N atom % made it possible to estimate the relative uptake potential (RUP) of tracer injections from the four soil depths and the specific RUP (SRUP), defined as RUP, per unit of fine root length density in the corresponding soil layer. 4. The highest tracer uptake rates were found in the topsoil, but contrasting RUP distributions were observed for the three tracers. Whilst the RUP was higher for NO(3)(-)- (15)N than for Rb(+) and Sr(2+) in the upper 50 cm of soil, the highest SRUP values for Sr(2+) and Rb(+) were found at a depth of 300 cm in the sandy soil, as well as in the clayey soil when gravitational solutions reached that depth. 5. Our results suggest that the fine roots of E. grandis trees exhibit contrasting potential uptake rates with depth depending on the nutrient. This functional specialization of roots might contribute to the high growth rates of E. grandis trees, efficiently providing the large amounts of nutrients required throughout the development of these fast-growing plantations.
Resumo:
Microbial lipase preparations from Thermomyces lanuginosus (TLL) and Pseudomonas fluorescens (PFL) were immobilized by multipoint covalent attachment on Toyopearl AF-amino-650M resin and the most active and thermal stable derivatives used to catalyze the transesterificanon reaction of babassu and palm oils with ethanol in solvent-free media For this different activating agents mainly glutaraldehyde glycidol and epichlorohydrin were used and immobilization parameters were estimated based on the hydrolysis of olive oil emulsion and butyl butyrate synthesis ILL immobilized on glyoxyl-resin allowed obtaining derivatives with the highest hydrolytic activity (HA(der)) and thermal stability between 27 and 31 times more stable than the soluble lipase Although PFL derivatives were found to be less active and thermally stables similar formation of butyl butyrate concentrations were found for both ILL and PFL derivatives The highest conversion into biodiesel was found in the transesterification of palm oil catalyzed by both ILL and PFL glyoxyl-derivatives (c) 2010 Elsevier B V All rights reserved