58 resultados para powder ceramic


Relevância:

40.00% 40.00%

Publicador:

Resumo:

P>The aim of this comparative clinical study was to evaluate a novel bioactive glass-ceramic (Biosilicate (R) 1-20 mu m particles) to treat dentine hypersensitivity (DH). Volunteers (n = 120 patients/ 230 teeth) received the following treatments: G1-Sensodyne (R), G2-SensiKill (R), G3-Biosilicate (R) incorporated in a 1% water-free-gel and G4-Biosilicate (R) mixed with distilled water at 1:10 ratio. G1 and G3 were applied at home, daily for 30 days; G2 and G4 were applied once a week by a dentist (four applications). A visual analogue scale (VAS) was employed to evaluate pain for each quadrant in one sensitive tooth at baseline, weekly during treatment and during a 6-month follow-up period. Dentine hypersensitivity values (G1/n = 52), (G2/n = 62), (G3/n = 59) and (G4/n = 59) were analysed with Kruskal-Wallis/Dunn tests. All the products were efficient in reducing DH after 4 weeks. Among the four materials tested, G4 demonstrated the best clinical performance and provided the fastest treatment to reduce DH pain. Distilled water proved to be an adequate vehicle to disperse Biosilicate (R). Low DH scores were maintained during the 6-month follow-up period. The hypothesis that the novel bioactive glass-ceramic may be an efficient treatment for DH was confirmed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the synthesis of Y(2)O(3) stabilized tetragonal zirconia polycrystals (Y-TZP)-alumina (Al(2)O(3)) powder mixture was performed by high-energy ball milling and the sintering behavior of this composite was investigated. In order to understand the phase transformations occurring during ball milling, samples were collected after different milling times, from 1 to 60 h. The milled powders were compacted by cold uniaxial pressing and sintered at 1400 and 1600 degrees C. Both powders and sintered samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry analysis (EDS) and mechanical properties. Fully dense samples were obtained after sintering at 1600 degrees C, while the samples sintered at 1400 degrees C presented a full density for powder mixtures milled for 30 and 60 h. Fracture toughness and Vickers hardnessvalues of the Y-T-ZP/Al(2)O(3) nanocomposite were improved due to dispersed Al(2)O(3) grains and reduced ZrO(2) grain size. Samples sintered at 1400 degrees C, based on powders milled for 60 h, presented high K(IC) and hardness values near to 8.0 Mpan(1/2) and 15 GPa, respectively (C) 2008 Elsevier B.V. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon carbide ceramics are very interesting materials to engineering applications because of their properties. These ceramics are produced by liquid phase sintering (LPS), where elevated temperature and time are necessary, and generally form volatile products that promote defects and damage their mechanical properties. In this work was studied the infiltration process to produce SiC ceramics, using shorter time and temperature than LPS, thereby reducing the undesirable chemical reactions. SiC powder was pressed at 300 MPa and pre-sintered at 1550 degrees C for 30 min. Unidirectional and spontaneous infiltration of this preform by Al2O3/Y2O3 liquid was done at 1850 degrees C for 5, 10, 30 and 60 min. The kinetics of infiltration was studied, and the infiltration equilibrium happened when the liquid infiltrated 12 mm into perform. The microstructures show grains of the SiC surrounded by infiltrated additives. The hardness and fracture toughness are similar to conventional SiC ceramics obtained by LPS. (c) 2007 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the manufacture of tubular UF and MF porous and supported ceramic membranes to oil/water emulsions demulsification. For such a purpose, a rigorous control was realized over the distribution and size of pores. Suspensions at 30 vol.% of solids (zirconia or alumina powder and sucrose) and 70 vol.% of liquids (isopropyl alcohol and PVB) were prepared in a jar mill varying the milling time of the sucrose particles, according to the pores size expected. The membranes were prepared by isostatic pressing method and structurally characterized by SEM, porosimetry by mercury intrusion and measurements of weight by immersion. The morphological characterization of the membranes identified the formation of porous zirconia and alumina membranes and supported membranes. The results of porosimetry analysis by mercury intrusion presented an average pore size of 1.8 mu m for the microfiltration porous membranes and for the ultrafiltration supported membranes, pores with average size of 0.01-0.03 mu m in the top-layer and 1.8 mu m in the support. By means of the manufacture method applied, it was possible to produce ultra and microfiltration membranes with high potential to be applied to the separation of oil/water emulsions. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed measurements of electrical resistivity as a function of temperature, rho(T), in polycrystalline samples of YBa(2)Cu(3)O(7-delta) (Y-123) subjected to different uniaxial compacting pressures. We observed by using X-ray diffractometry that samples have a very similar composition. Most of the identified peaks are related to the superconducting Y-123 phase. Also, from the X-ray diffraction patterns performed, in powder and pellet samples, we estimated the Lotgering factor along the (00l) direction, F((00l)). The results indicate that F((00l)) increases from 0.13 to 0.16. From electrical resistivity measurements as a function of temperature, we were able to separate contributions arising from both the grain misalignment and microstructural defects. We found appreciable degradation in the normal-state transport properties of samples with an increase in uniaxial compacting pressure. It seems that this type of behavior is associated with an increase in the influence of microstructural defects at the intergranular level. The experimental results are analyzed in the framework of a current conduction model of granular samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: This study investigated the effect of different ferrule heights on endodontically treated premolars. MATERIAL AND METHODS: Fifty sound mandibular first premolars were endodontically treated and then restored with 7-mm fiber post (FRC Postec Plus #1 Ivoclar-Vivadent) luted with self-polymerized resin cement (Multilink, Ivoclar Vivadent) while the coronal section was restored with hybrid composite core build-up material (Tetric Ceram, Ivoclar-Vivadent), which received all-ceramic crown. Different ferrule heights were investigated: 1-mm circumferential ferrule without post and core (group 1 used as control), a circumferential 1-mm ferrule (group 2), non-uniform ferrule 2-mm buccally and 1-mm lingually (group 3), non-uniform ferrule 3-mm buccally and 2-mm lingually (group 4), and finally no ferrule preparation (group 5). The fracture load and failure pattern of the tested groups were investigated by applying axial load to the ceramic crowns (n=10). Data were analyzed statistically by one-way ANOVA and Tukey's post-hoc test was used for pair-wise comparisons (α=0.05). RESULTS: There were no significant differences among the failure load of all tested groups (P<0.780). The control group had the lowest fracture resistance (891.43±202.22 N) and the highest catastrophic failure rate (P<0.05). Compared to the control group, the use of fiber post reduced the percentage of catastrophic failure while increasing the ferrule height did not influence the fracture resistance of the restored specimens. CONCLUSIONS: Within the limitations of this study, increasing the ferrule length did not influence the fracture resistance of endodontically treated teeth restored with glass ceramic crowns. Insertion of a fiber post could reduce the percentage of catastrophic failure of these restorations under function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the metal-ceramic bond strength (MCBS) of 6 metal-ceramic pairs (2 Ni-Cr alloys and 1 Pd-Ag alloy with 2 dental ceramics) and correlate the MCBS values with the differences between the coefficients of linear thermal expansion (CTEs) of the metals and ceramics. Verabond (VB) Ni-Cr-Be alloy, Verabond II (VB2), Ni-Cr alloy, Pors-on 4 (P), Pd-Ag alloy, and IPS (I) and Duceram (D) ceramics were used for the MCBS test and dilatometric test. Forty-eight ceramic rings were built around metallic rods (3.0 mm in diameter and 70.0 mm in length) made from the evaluated alloys. The rods were subsequently embedded in gypsum cast in order to perform a tensile load test, which enabled calculating the CMBS. Five specimens (2.0 mm in diameter and 12.0 mm in length) of each material were made for the dilatometric test. The chromel-alumel thermocouple required for the test was welded into the metal test specimens and inserted into the ceramics. ANOVA and Tukey's test revealed significant differences (p=0.01) for the MCBS test results (MPa), with PI showing higher MCBS (67.72) than the other pairs, which did not present any significant differences. The CTE (10-6 oC-1) differences were: VBI (0.54), VBD (1.33), VB2I (-0.14), VB2D (0.63), PI (1.84) and PD (2.62). Pearson's correlation test (r=0.17) was performed to evaluate of correlation between MCBS and CTE differences. Within the limitations of this study and based on the obtained results, there was no correlation between MCBS and CTE differences for the evaluated metal-ceramic pairs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dentin hypersensitivity (DH) is a painful response to stimulus applied to the open dentinal tubules of a vital tooth. It's a common oral condition, however, without an ideal treatment available yet. This work evaluated in vitro the effect of micron-sized particles from a novel bioactive glass-ceramic (Biosilicate) in occluding open dentinal tubules. A dentin disc model was employed to observe comparatively, using scanning electron microscopy (SEM), dentinal tubule occlusion by different products and deposition of hydroxyl carbonate apatite (HCA) on dentin surface by Biosilicate, after a single application: G1 - Dentifrice with potassium nitrate and fluoride; G2 - Two-step calcium phosphate precipitation treatment; G3 - Water-free gel containing Biosilicate particles (1%); G4 - Biosilicate particles mixed with distilled water in a 1:10 ratio; all of them after 1, 12 and 24 hours of immersion in artificial saliva. Fourier transform infrared spectroscopy (FTIR) was performed to detect HCA formation on dentin discs filled with Biosilicate after 2 minutes, 30 minutes and 12 hours of immersion in artificial saliva. SEM showed a layer of HCA formed on dentin surface after 24 hours by G4. G1, G2 and G3 promoted not total occlusion of open dentinal tubules after 24 hours. FTIR showed HCA precipitation on the dentin surface induced by Biosilicate after 30 minutes. The micron-sized particles from the bioactive glass-ceramic thus were able to induce HCA deposition in open dentinal tubules in vitro. This finding suggests that Biosilicate may provide a new option for treating DH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The success of metal-ceramic restorations depends on an optimal bond between metal and ceramic. This study evaluated the effect of 3 casting atmospheres on the metal-ceramic bond strength (MCBS) of 2 Ni-Cr alloys, with beryllium (Fit Cast V) and without beryllium (Fit Cast SB). Sixty acrylic resin patterns (8 mm long and 5 mm diameter) were obtained using a fluorocarbon resin matrix. Wax was used to refine the surface of acrylic resin patterns that were invested and cast in an induction casting machine under normal, vacuum, and argon atmospheres at a temperature of 1340ºC. The castings were divested manually and airborne-particle abraded with 100-µm aluminum-oxide. Ten castings were obtained for each group. The IPS Classic V ceramic was applied (2 mm high and 5 mm diameter). The shear bond strength was tested in a mechanical testing machine with a crosshead speed of 2.0 mm/min. The MCBS data (MPa) were subjected to 2-way analysis of variance (α=0.05). There was no statistically significant difference (p>0.05) between the alloys or among the casting atmospheres. Within the limitations of this study, it may be concluded that the presence of beryllium and the casting atmosphere did not interfere in the MCBS of the evaluated metal-ceramic combinations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the fracture strength of teeth restored with bonded ceramic inlays and overlays compared to sound teeth. Thirty sound human maxillary premolars were assigned to 3 groups: 1- sound/unprepared (control); 2- inlays and 3- overlays. The inlay cavity design was Class II MOD preparation with an occlusal width of 1/2 of the intercuspal distance. The overlay cavity design was similar to that of the inlay group, except for buccal and palatal cusp coverage The inlay and overlay groups were restored with feldspathic porcelain bonded with adhesive cement. The specimens were subjected to a compressive load until fracture. Data were analyzed statistically by the Kruskal-Wallis test at 5% significance level. The fracture strength means (KN) were: Sound/unprepared group = 1.17, Inlay group= 1.17, and Overlay group = 1.14. There were no statistically significant differences (p>0.05) among the groups. For inlays and overlays, the predominant fracture mode involved fragments of one cusp (70% of simple fractures). The fracture strength of teeth restored with inlay and overlay ceramics with cusp coverage was similar to that of intact teeth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation was carried out to study the potential use of the angular distribution of scattered photons by human breast samples for a rapid identification of neoplasias of breast tissues. This technique has possible applications as diagnostic aid for breast cancer. In this work, a commercial powder diffractometer was used to obtain the scattering profiles from breast tissues histopathologically classified as normal breast tissues, fibroadenomas (benign breast diseases) and carcinomas (malignant breast diseases), in the interval 0.02 angstrom(-1) < x < 0.62 angstrom(-1). The experimental methods and data corrections are discussed in detail, and they included background subtraction, polarization, self-attenuation and geometric effects. The validation of the experimental procedure was achieved through an analysis of water sample. The results showed that the scattering profile is a unique impression of each type of tissue, being correlated with their microscopic morphological features. Multivariate analysis was applied to these profiles in order to verify if the information carried by these scattering profiles allow the differentiation between normal, benign and malignant breast tissues. The statistical analysis results showed that a correct identification of 75% of the analyzed samples is accomplished. The values of sensibility and specificity of this method in correctly differentiating between normal and neoplastic samples were 95.6% and 82.3%, respectively, while the values for differentiation between benign and malignant neoplasias were 78.6% and 62.5%. These initial results indicate the feasible use of commercial powder diffractometer to provide a rapid diagnostic with a high sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This in vitro study evaluated the influence of the surface pretreatment of a feldspathic ceramic on the shear bond strength of two different resin cements. Background Data: Although several conventional surface treatments have been used on feldspathic ceramic, few studies have investigated the effects of an alternative surface treatment, the association of aluminum oxide sandblasting with Nd:YAG and Er:YAG lasers. Methods: Sixty samples made of a feldspathic ceramic were divided into three groups (n = 20) and treated with (1) controlled-air abrasion with Al(2)O(3) + 10% hydrofluoric acid (HF), (2) Al(2)O(3) + Er:YAG laser, and (3) Al(2)O(3) + Nd:YAG laser. Afterward, silane (Dentsply) was applied on each treated surface. Each of the three main groups was divided into two subgroups (n = 10), where a different resin cement was employed for each subgroup. It was built a cylinder with resin cement (RelyX Arc) in subgroup (A) and with self-adhesive cement (RelyX U100) in subgroup (B). After 24 h at 37 degrees C, the prepared specimens were submitted to shear bond strength test and stereoscopic evaluation to determine the type of failure. Results: Bond strength mean values were not statistically significant for the surface treatment methods or resin cements. Conclusion: The null surface treatment proposed with aluminum oxide sandblasting associated with the Er:YAG or Nd:YAG laser and using cementation with self-adhesive cement can be an alternative bonding technique for feldspathic ceramic, since it was as effective as the conventional treatment with aluminum oxide sandblasting and hydrofluoric acid using the conventional resin cement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure and the local atomic order of a series of nanocrystalline ZrO(2)-CaO solid solutions with varying CaO content were studied by synchrotron radiation X-ray powder diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. These samples were synthesized by a pH-controlled nitrate-glycine gel-combustion process. For CaO contents up to 8 mol%, the t' form of the tetragonal phase (c/a > 1) was identified, whereas for 10 and 12 mol% CaO, the t '' form (c/a=1; oxygen anions displaced from their ideal positions in the cubic phase) was detected. Finally, the cubic phase was observed for solid solutions with CaO content of 14 mol% CaO or higher. The t'/t '' and t ''/cubic compositional boundaries were determined to be at 9 (1) and 13 (1) mol% CaO, respectively. The EXAFS study demonstrated that this transition is related to a tetragonal-to-cubic symmetry change of the first oxygen coordination shell around the Zr atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structure of compositionally homogeneous, nanocrystalline ZrO2-CeO2 solutions was investigated by X-ray powder diffraction as a function of temperature for compositions between 50 and 65 mol % CeO2 center dot ZrO2-50 and 60 mol % CeO2 solid solutions, which exhibit the t'-form of the tetragonal phase at room temperature, transform into the cubic phase in two steps: t'-to-t '' followed by t ''-to-cubic. But the ZrO2-65 mol % CeO2, which exhibits the t ''-form, transforms directly to the cubic phase. The results suggest that t'-to-t '' transition is of first order, but t ''-to-cubic seems to be of second order. (C) 2008 International Centre for Diffraction Data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition between tetragonal and cubic phases in nanostructured ZrO2-Sc2O3 solid solutions by high-temperature X-ray powder diffraction using synchrotron radiation is presented. ZrO2-8 and 11 mol% Sc2O3 nanopowders that exhibit the t'- and t ''-forms of the tetragonal phase, respectively, were synthesized by a stoichiometric nitrate-lysine gel-combustion route. The average crystallite size treated at 900 degrees C was about 25 nm for both compositions. Our results showed that t'-t '' and t ''-cubic transitions take place for the 8 and 11 mol% Sc2O3 samples, respectively. (C) 2008 International Centre for Diffraction Data.