16 resultados para new world monkeys


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four hundred and forty-eight samples of total blood from wild monkeys living in areas where human autochthonous malaria cases have been reported were screened for the presence of Plasmodium using microscopy and PCR analysis. Samples came from the following distinct ecological areas of Brazil: Atlantic forest (N = 140), semideciduous Atlantic forest (N = 257) and Cerrado (a savannah-like habitat) (N = 51). Thick and thin blood smears of each specimen were examined and Plasmodium infection was screened by multiplex polymerase chain reaction (multiplex PCR). The frequency of Plasmodium infections detected by PCR in Alouatta guariba clamitans in the Sao Paulo Atlantic forest was 11.3% or 8/71 (5.6% for Plasmodium malariae and 5.6% for Plasmodium vivax) and one specimen was positive for Plasmodium falciparum (1.4%); Callithrix sp. (N = 30) and Cebus apella (N = 39) specimens were negative by PCR tests. Microscopy analysis was negative for all specimens from the Atlantic forest. The positivity rate for Alouatta caraya from semideciduous Atlantic forest was 6.8% (16/235) in the PCR tests (5.5, 0.8 and 0.4% for P. malariae, P. falciparum and P. vivax, respectively), while C apella specimens were negative. Parasitological examination of I he samples using thick smears revealed Plasmodium sp. infections in only seven specimens, which had few parasites (3.0%). Monkeys from the Cerrado (a savannah-like habitat) (42 specimens of A. caraya, 5 of Callithrix jacchus and 4 of C. apella) were negative in both tests. The parasitological prevalence of P. vivax and P. malariae in wild monkeys from Atlantic forest and semideciduous Atlantic forest and the finding of a positive result for P.falciparum in Alouatta from both types of forest support the hypothesis that monkeys belonging to this genus could be a potential reservoir. Furthermore, these findings raise the question of the relationship between simian and autochthonous human malaria in extra-Amazonian regions. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early American crania show a different morphological pattern from the one shared by late Native Americans. Although the origin of the diachronic morphological diversity seen on the continents is still debated, the distinct morphology of early Americans is well documented and widely dispersed. This morphology has been described extensively for South America, where larger samples are available. Here we test the hypotheses that the morphology of Early Americans results from retention of the morphological pattern of Late Pleistocene modern humans and that the occupation of the New World precedes the morphological differentiation that gave rise to recent Eurasian and American morphology. We compare Early American samples with European Upper Paleolithic skulls, the East Asian Zhoukoudian Upper Cave specimens and a series of 20 modern human reference crania. Canonical Analysis and Minimum Spanning Tree were used to assess the morphological affinities among the series, while Mantel and Dow-Cheverud tests based on Mahalanobis Squared Distances were used to test different evolutionary scenarios. Our results show strong morphological affinities among the early series irrespective of geographical origin, which together with the matrix analyses results favor the scenario of a late morphological differentiation of modern humans. We conclude that the geographic differentiation of modern human morphology is a late phenomenon that occurred after the initial settlement of the Americas. Am J Phys Anthropol 144:442-453, 2011. (c) 2010 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An organism is built through a series of contingent factors, yet it is determined by historical, physical, and developmental constraints. A constraint should not be understood as an absolute obstacle to evolution, as it may also generate new possibilities for evolutionary change. Modularity is, in this context, an important way of organizing biological information and has been recognized as a central concept in evolutionary biology bridging on developmental, genetics, morphological, biochemical, and physiological studies. In this article, we explore how modularity affects the evolution of a complex system in two mammalian lineages by analyzing correlation, variance/covariance, and residual matrices (without size variation). We use the multivariate response to selection equation to simulate the behavior of Eutheria and Metharia skulls in terms of their evolutionary flexibility and constraints. We relate these results to classical approaches based on morphological integration tests based on functional/developmental hypotheses. Eutherians (Neotropical primates) showed smaller magnitudes of integration compared with Metatheria (didelphids) and also skull modules more clearly delimited. Didelphids showed higher magnitudes of integration and their modularity is strongly influenced by within-groups size variation to a degree that evolutionary responses are basically aligned with size variation. Primates still have a good portion of the total variation based on size; however, their enhanced modularization allows a broader spectrum of responses, more similar to the selection gradients applied (enhanced flexibility). Without size variation, both groups become much more similar in terms of modularity patterns and magnitudes and, consequently, in their evolutionary flexibility. J. Exp. Zool. (Mol. Dev. Evol.) 314B:663-683, 2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional retinal projections target three functionally complementary systems it) the brain of mammals: the primary visual system, the visuomotor integration systems and the circadian timing system. In recent years, studies in several animals have been conducted to investigate the retinal projections to these three systems, despite some evidence of additional targets. The aim of this study was to disclose a previously unknown connection between the retina and the parabrachial complex of the common marmoset, by means of the intraocular injection of cholera toxin Subunit b. A few labeled retinal fibers/terminals that are detected in the medial parabrachial portion of the marmoset brain show clear varicosities, Suggesting terminal fields. Although the possible role of these projections remains unknown, they may provide a modulation of the cholinergic parabrachial neurons which project to the thalamic dorsal lateral geniculate nucleus. (c) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary change in New World Monkey (NWM) skulls occurred primarily along the line of least resistance defined by size (including allometric) variation (g(max)). Although the direction of evolution was aligned with this axis, it was not clear whether this macroevolutionary pattern results from the conservation of within population genetic covariance patterns (long-term constraint) or long-term selection along a size dimension, or whether both, constraints and selection, were inextricably involved. Furthermore, G-matrix stability can also be a consequence of selection, which implies that both, constraints embodied in g(max) and evolutionary changes observed on the trait averages, would be influenced by selection Here, we describe a combination of approaches that allows one to test whether any particular instance of size evolution is a correlated by-product due to constraints (g(max)) or is due to direct selection on size and apply it to NWM lineages as a case study. The approach is based on comparing the direction and amount of evolutionary change produced by two different simulated sets of net-selection gradients (beta), a size (isometric and allometric size) and a nonsize set. Using this approach it is possible to distinguish between the two hypotheses (indirect size evolution due to constraints or direct selection on size), because although both may produce an evolutionary response aligned with g(max), the amount of change produced by random selection operating through the variance/covariance patterns (constraints hypothesis) will be much smaller than that produced by selection on size (selection hypothesis). Furthermore, the alignment of simulated evolutionary changes with g(max) when selection is not on size is not as tight as when selection is actually on size, allowing a statistical test of whether a particular observed case of evolution along the line of least resistance is the result of selection along it or not. Also, with matrix diagonalization (principal components [PC]) it is possible to calculate directly the net-selection gradient on size alone (first PC [PC1]) by dividing the amount of phenotypic difference between any two populations by the amount of variation in PC1, which allows one to benchmark whether selection was on size or not

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of the genetic variance/covariance matrix (G-matrix) is a recent and fruitful approach in evolutionary biology, providing a window of investigating for the evolution of complex characters. Although G-matrix studies were originally conducted for microevolutionary timescales, they could be extrapolated to macroevolution as long as the G-matrix remains relatively constant, or proportional, along the period of interest. A promising approach to investigating the constancy of G-matrices is to compare their phenotypic counterparts (P-matrices) in a large group of related species; if significant similarity is found among several taxa, it is very likely that the underlying G-matrices are also equivalent. Here we study the similarity of covariance and correlation structure in a broad sample of Old World monkeys and apes (Catarrhini). We made phylogenetically structured comparisons of correlation and covariance matrices derived from 39 skull traits, ranging from between species to the superfamily level. We also compared the overall magnitude of integration between skull traits (r(2)) for all Catarrhim genera. Our results show that P-matrices were not strictly constant among catarrhines, but the amount of divergence observed among taxa was generally low. There was significant and positive correlation between the amount of divergence in correlation and covariance patterns among the 30 genera and their phylogenetic distances derived from a recently proposed phylogenetic hypothesis. Our data demonstrate that the P-matrices remained relatively similar along the evolutionary history of catarrhines, and comparisons with the G-matrix available for a New World monkey genus (Saguinus) suggests that the same holds for all anthropoids. The magnitude of integration, in contrast, varied considerably among genera, indicating that evolution of the magnitude, rather than the pattern of inter-trait correlations, might have played an important role in the diversification of the catarrhine skull. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphological integration refers to the modular structuring of inter-trait relationships in an organism, which could bias the direction and rate of morphological change, either constraining or facilitating evolution along certain dimensions of the morphospace. Therefore, the description of patterns and magnitudes of morphological integration and the analysis of their evolutionary consequences are central to understand the evolution of complex traits. Here we analyze morphological integration in the skull of several mammalian orders, addressing the following questions: are there common patterns of inter-trait relationships? Are these patterns compatible with hypotheses based on shared development and function? Do morphological integration patterns and magnitudes vary in the same way across groups? We digitized more than 3,500 specimens spanning 15 mammalian orders, estimated the correspondent pooled within-group correlation and variance/covariance matrices for 35 skull traits and compared those matrices among the orders. We also compared observed patterns of integration to theoretical expectations based on common development and function. Our results point to a largely shared pattern of inter-trait correlations, implying that mammalian skull diversity has been produced upon a common covariance structure that remained similar for at least 65 million years. Comparisons with a rodent genetic variance/covariance matrix suggest that this broad similarity extends also to the genetic factors underlying phenotypic variation. In contrast to the relative constancy of inter-trait correlation/covariance patterns, magnitudes varied markedly across groups. Several morphological modules hypothesized from shared development and function were detected in the mammalian taxa studied. Our data provide evidence that mammalian skull evolution can be viewed as a history of inter-module parcellation, with the modules themselves being more clearly marked in those lineages with lower overall magnitude of integration. The implication of these findings is that the main evolutionary trend in the mammalian skull was one of decreasing the constraints to evolution by promoting a more modular architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rod bipolar cells in Cebus apella monkey retina were identified by an antibody against the alpha isoform of protein kinase C (PKC alpha). which has been shown to selectively identify rod bipolars in two other primates and various mammals. Vertical sections were used to confirm the identity of these cells by their characteristic morphology of dendrites and axons. Their topographic distribution was assessed in horizontal sections; counts taken along the dorsal, ventral, nasal, and temporal quadrants. The density of rod bipolar cells increased from 500 to 2900 cells/mm(2) at 1 mm from the fovea to reach a peak of 10,000-12,000 cellss/mm(2) at 4 mm, approximately 5 deg of eccentricity, and then gradually decreased toward retinal periphery to values of 5000 cells/mm(2) or less. Rod to rod bipolar density ratio remained between 10 and 20 across most of the retinal extension. The number of rod bipolar cells per retina was 6,360,000 +/- 387,433 (mean +/- S.D., n = 6). The anti-PKC alpha antibody has shown to be a good marker of rod bipolar cells of Cebus, and the cell distribution is similar to that described for other primates. In spite of the difference in the central retina, the density variation of rod bipolar cells in the Cebus and Macaca as well as the convergence from rod to rod bipolar cells are Generally similar, suggesting that both retinae stabilize similar sensitivity (as measured by rod density) and convergence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stingless bees (Meliponini) constitute a diverse group of highly eusocial insects that occur throughout tropical regions around the world. The meliponine genus Melipona is restricted to the New World tropics and has over 50 described species. Melipona, like Apis, possesses the remarkable ability to use representational communication to indicate the location of foraging patches. Although Melipona has been the subject of numerous behavioral, ecological, and genetic studies, the evolutionary history of this genus remains largely unexplored. Here, we implement a multigene phylogenetic approach based on nuclear, mitochondrial, and ribosomal loci, coupled with molecular clock methods, to elucidate the phylogenetic relationships and antiquity of subgenera and species of Melipona. Our phylogenetic analysis resolves the relationship among subgenera and tends to agree with morphology-based classification hypotheses. Our molecular clock analysis indicates that the genus Melipona shared a most recent common ancestor at least similar to 14-17 million years (My) ago. These results provide the groundwork for future comparative analyses aimed at understanding the evolution of complex communication mechanisms in eusocial Apidae. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The contact of inland and coastal prehistoric groups in Brazil is believed to have been restricted to regions with no geographical barrier, as is the case in the Ribeira de Iguape valley. The inland osteological collection from the riverine shellmound Moraes (5800-4500 BP) represents a unique opportunity to test this assumption for this region. Despite cultural similarities between riverine and coastal shellmounds, important ecological and site distribution differences are expected to impact on lifestyle. The purpose of this study is thus to document and interpret health and lifestyle indicators in Moraes in comparison to coastal shellmound groups. Specifically we test if the rare evidence of fish and mollusc remains in the riverine shellmound led to (a) higher caries rates and (b) lower auditory exostosis frequency and (c) if the small size of the riverine shellmound translates into reduced demographic density and thus rarity of communicable infectious diseases. Of the three hypotheses, (a) was confirmed, (b) was rejected and (c) was partly rejected. Bioanthropological similarities between Moraes and coastal shellmounds include auditory exostoses with equally high frequencies; significantly more frequent osteoarthritis in upper than in lower limbs; cranial and dental morphological affinities and low frequencies of violent trauma. However, there are also important differences: Moraes subsisted on a much broader protein diet and consumed more cariogenic food, but showed a stature even shorter than coastal groups. Thus, despite the contact also suggested by treponematoses in both site types, there was enough time for the people at the riverine site to adapt to local conditions. (c) 2008 Elsevier GmbH. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to study the intergeneric variability of the Y chromosome, we describe the hybridization of the Y chromosome of Brachyteles arachnoides, obtained by microdissection, to metaphases of Ateles belzebuth marginatus, Lagothrix lagothricha, and Alouatta male specimens. Brachyteles arachnoides (Atelinae) has 62 chromosomes and a very small Y chromosome. Our results showed that the Brachyteles arachnoides Y chromosome probe hybridized to Lagothrix lagothricha metaphases yielding one hybridization signal on only the tiny Y chromosome, and when hybridized with Ateles belzebuth marginatus metaphases it yielded one hybridization signal on two thirds of the small acrocentric Y chromosome. However, no hybridization signal was observed in Alouatta metaphases (subfamily Alouattinae), a closely related genus in the Atelidae family. Furthermore, our data support a close phylogenetic relationship among Brachyteles, Ateles, and Lagothrix and their placement in the Atelinae subfamily, but exclude Alouatta from this group indicating its placement as basal to this group. Copyright (C) 2009 S. Karger AG, Basel

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a recent study we found that crania from South Amerindian populations on each side of the Andes differ significantly in terms of craniofacial shape. Western populations formed one morphological group, distributed continuously over 14,000 km from the Fuegian archipelago (southern Chile) to the Zulia region (northwestern Venezuela). Easterners formed another group, distributed from the Atlantic Coast up to the eastern foothills of the Andes. This differentiation is further supported by several genetic studies, and indirectly by ecological and archaeological studies. Some authors suggest that this dual biological pattern is consistent with differential rates of gene flow and genetic drift operating on both sides of the Cordillera due to historical reasons. Here we show that such East-West patterning is also observable in North America. We suggest that the ""ecological zones model"" proposed by Dixon, explaining the spread of the early Americans along a Pacific dispersal corridor, combined with the evolution of different population dynamics in both regions, is the most parsimonious mechanism to explain the observed patterns of within- and between-group craniofacial variability. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Threadsnakes of the tribe Epictini are endemic to the New World, occurring from the United States to Argentina, mostly in the Neotropical region. Currently, the taxonomic status of most species is unclear and there has been no previous attempt of a comprehensive taxonomic revision of Neotropical taxa. Taxonomy of the group is a difficult task due to the paucity of geographic samples, general homogeneous morphology and brevity of species descriptions. Therefore, the only way to address the taxonomic status of existing names is through detailed characterization of the types and the search for additional material of the poorly known species. In this study, we evaluated the taxonomic status of the Colombian threadsnakes and report on geographical variation of meristic, morphometric, colour pattern, and hemipenis characters. On the basis of available samples we recognize the following species in Colombia: Epictia goudotii, E. magnamaculata, E. signata, Rena nicefori, Tricheilostoma brevissimum, T. dugandi, T. joshuai and T. macrolepis. We discuss the systematic position of Rena nicefori and propose its allocation in the genus Tricheilostoma based on a unique combination of morphological characters. Furthermore, we provide a key to the representatives of the tribe Epictini in Colombia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

GB virus C/hepatitis G (GBV-C) is an RNA virus of the family Flaviviridae. Despite replicating with an RNA-dependent RNA polymerase, some previous estimates of rates of evolutionary change in GBV-C suggest that it fixes mutations at the anomalously low rate of similar to 100(-7) nucleotide substitution per site, per year. However, these estimates were largely based on the assumption that GBV-C and its close relative GBV-A (New World monkey GB viruses) codiverged with their primate hosts over millions of years. Herein, we estimated the substitution rate of GBV-C using the largest set of dated GBV-C isolates compiled to date and a Bayesian coalescent approach that utilizes the year of sampling and so is independent of the assumption of codivergence. This revealed a rate of evolutionary change approximately four orders of magnitude higher than that estimated previously, in the range of 10(-2) to 10(-3) sub/site/year, and hence in line with those previously determined for RNA viruses in general and the Flaviviridae in particular. In addition, we tested the assumption of host-virus codivergence in GBV-A by performing a reconciliation analysis of host and virus phylogenies. Strikingly, we found no statistical evidence for host-virus codivergence in GBV-A, indicating that substitution rates in the GB viruses should not be estimated from host divergence times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES To identify the aetiological agents of cutaneous leishmaniasis and to investigate the genetic polymorphism of Leishmania (Viannia) parasites circulating in an area with endemic cutaneous leishmaniasis (CL) in the Atlantic rainforest region of northeastern Brazil. METHODS Leishmania spp. isolates came from three sources: (i) patients diagnosed clinically and parasitologically with CL based on primary lesions, secondary lesions, clinical recidiva, mucocutaneous leishmaniasis and scars; (ii) sentinel hamsters, sylvatic or synanthropic small rodents; and (iii) the sand fly species Lutzomyia whitmani. Isolates were characterised using monoclonal antibodies, multilocus enzyme electrophoresis (MLEE) and polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer region rDNA locus. RESULTS Seventy-seven isolates were obtained and characterised. All isolates were identified as Leishmania (Viannia) braziliensis serodeme 1 based on reactivity to monoclonal antibodies. MLEE identified 10 zymodemes circulating in the study region. Most isolates were classified as zymodemes closely related to L. (V.) braziliensis, but five isolates were classified as Leishmania (Viannia) shawi. All but three of the identified zymodemes have so far been observed only in the study region. Enzootic transmission and multiclonal infection were observed. CONCLUSIONS Our results confirm that transmission cycle complexity and the co-existence of two or more species in the same area can affect the level of genetic polymorphism in a natural Leishmania population. Although it is not possible to make inferences as to the modes of genetic exchange, one can speculate that some of the zymodemes specific to the region are hybrids of L. (V.) braziliensis and L. (V.) shawi.