43 resultados para endothelial dysfunction
Resumo:
The aim of this study was to evaluate the role of cyclooxygenase (COX) in venous vascular reactivity changes after an oral lipid overload (OLO). Venous endothelial function (dorsal hand vein technique) was evaluated in fasting, 30 minutes after COX inhibition (aspirin-fasting), 2 to 4 hours after an OLO (1000 kcal, 58% fat), and again after COX inhibition (aspirin-OLO, 600 mg/200 mL water) in 10 healthy adults (age, 28.1 +/- 1.3 years; body mass index, 22.3 +/- 0.6 kg/m(2)). Fasting, 2- to 4-hour post-OLO, and 60-minute postaspirin plasma glucose, insulin, and lipids were also evaluated. The OLO increased triglycerides and insulin, reduced low-density lipoprotein and high-density lipoprotein, but glycemia and total cholesterol remained unchanged. There were no metabolic differences between OLO and aspirin-OLO. In fasting, aspirin reduced acetylcholine-induced venodilation (107.0% +/- 14% versus 57.3% +/- 11%; P < 0.001). Vascular reactivity was blunted after the OLO (phenylephrine dose: 0.3 +/- 0.2 fasting versus 1.9 +/- 0.8 nmol/min after OLO; P < 0.001) and was partially corrected by aspirin (0.4 +/- 0.2; P < 0.001). Similar changes were observed in maximum venodilation after acetylcholine (107.0% +/- 14% fasting versus 60.4% +/- 9% after OLO, P < 0.001; aspirin-OLO: 95.9% +/- 6%; P < 0.001). The responses to sodium nitroprusside remained unchanged during the study. We conclude that the OLO reduction in the endothelium-dependent venoconstruction and venodilation is partially the result of the action of COX.
Resumo:
Cardiovascular disease is less frequent in premenopausal women than in age-matched men or postmenopausal women. Moreover, the marked age-related decline in serum dehydroepiandrosterone (DHEA) level has been associated to cardiovascular disease. The aim of this study was to evaluate the effects of DHEA treatment on vascular function in ovariectomized rats. At 8 weeks of age, female Wistar rats were ovariectomized (OVX) or sham (SHAM) operated and 8 weeks after surgery both groups were treated with vehicle or DHEA (10 mg kg-1 week-1) for 3 weeks. Aortic rings were used to evaluate the vasoconstrictor response to phenylephrine (PHE) and the relaxation responses to acetylcholine (ACh) and sodium nitroprusside (SNP). Tissue reactive oxygen species (ROS) production and SOD, NADPH oxidase and eNOS protein expression were analysed. PHE-induced contraction was increased in aortic rings from OVX compared to SHAM, associated with a reduction in NO bioavailability. Furthermore, the relaxation induced by ACh was reduced in arteries from OVX, while SNP relaxation did not change. The incubation of aortic rings with SOD or apocynin restored the enhanced PHE-contraction and the impaired ACh-relaxation only in OVX. DHEA treatment corrected the increased PHE contraction and the impaired ACh-induced relaxation observed in OVX by an increment in NO bioavailability and decrease in ROS production. Besides, DHEA treatment restores the reduced Cu/Zn-SOD protein expression and eNOS phosphorylation and the increased NADPH oxidase protein expression in the aorta of OVX rats. The present results suggest an important action of DHEA, improving endothelial function in OVX rats by acting as an antioxidant and enhancing the NO bioavailability.
Resumo:
Background and purpose: The present study was designed to assess whether cyclooxygenase-2 (COX-2) activation is involved in the effects of chronic aldosterone treatment on endothelial function of mesenteric resistance arteries (MRA) from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Experimental approach: Relaxation to acetylcholine was measured in MRA from both untreated and aldosterone-treated strains. Vasomotor responses to prostacyclin and U46619 were also analysed. Release of 6-oxo-prostaglandin (PG)F(1 alpha) and thromboxane B(2) (TxB(2)) was determined by enzyme immunoassay. COX-2 protein expression was measured by western blot. Key results: Aldosterone reduced acetylcholine relaxation in MRA from both strains. In MRA from both aldosterone-treated strains the COX-1/2 or COX-2 inhibitor (indomethacin and NS-398, respectively), Tx2 synthesis inhibitor (furegrelate), prostacyclin synthesis inhibitor (tranylcypromine) or Tx2/PG2 receptor antagonist (SQ 29 548), but not COX-1 inhibitor SC-560, increased acetylcholine relaxation. In untreated rats this response was increased only in SHR. Prostacyclin elicited a biphasic vasomotor response: lower concentrations elicited relaxation, whereas higher concentrations elicited contraction that was reduced by SQ 29 548. Aldosterone increased the acetylcholine-stimulated production of 6-oxo-PGF(1 alpha) and TxB(2) in MRA from both strains. COX-2 expression was higher in both strains of rats treated with aldosterone. Conclusions and implications: Chronic treatment with aldosterone impaired endothelial function in MRA under normotensive and hypertensive conditions by increasing COX-2-derived prostacyclin and thromboxane A(2). As endothelial dysfunction participates in the pathogenesis of many cardiovascular disorders we hypothesize that anti-inflammatory drugs, specifically COX-2 inhibitors, could ameliorate vascular damage in patients with elevated aldosterone production.
Resumo:
Objective We investigated the effects of high-fat diet-induced obesity on vascular proinflammatory factors and oxidative stress on endothelium-dependent relaxation of the aorta. Methods Female Swiss mice were submitted to a high-fat diet for 16 weeks. At the end of the experimental period, we evaluated blood pressure, relaxation in response to acetylcholine in aortic rings in the absence and the presence of the superoxide anion scavenger, superoxide dismutase (SOD, 150 U/ml), and the nuclear factor (NF)-kappa B inhibitor, sodium salicylate (5 mmol/l). Aortic protein expression of endothelial nitric oxide synthase, Cu/Zn-SOD, NF-kappa B, I kappa B-alpha, and proinflammatory cytokines were also evaluated. Results Obese mice presented higher systolic and diastolic blood pressure than control mice (P<0.05). The relaxation of aortas to acetylcholine, but not to sodium nitroprusside, was significantly decreased in obese mice and was corrected by both SOD and sodium salicylate (P<0.05). The protein expression of endothelial nitric oxide synthase and Cu/Zn-SOD was significantly decreased in aorta from obese mice (P<0.05). Total p65 NF-kappa B subunit protein expression was not affected by obesity, but the protein expression of NF-kappa B inhibitor I kappa B-alpha was lower in aorta from obese mice (P<0.05). There were no significant differences in the interleukin (IL)-1 beta and IL-6 protein expression between groups. In contrast, the expression of TNF-alpha was significantly increased in aortas from obese mice. Conclusion Our resultssuggest that the reducedantioxidant defense and the local NF-kappa B pathway play an important role in the impairment of endothelium-dependent relaxation in aorta from obese mice. J Hypertens 28: 2111-2119 (C) 2010 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Background: Endothelial dysfunction is one of the early signs of cardiovascular damage. High androgen levels have been related to inflammatory endothelial markers in pre- and post-menopausal women. Aim: This cross-sectional study aimed at investigating whether free androgen index (FAI) [estimated by dividing total testosterone (nmol/l) by SHBG (nmol/l) x 100] is related to endothelial function during post-menopause. Subjects and methods: Twenty-six post-menopausal women were assessed with the dorsal hand vein compliance technique. Acetylcholine (Ach) and sodium nitroprusside (SNP) dose-response curves were constructed to test endothelium-dependent and independent relaxation, respectively. Results: Mean age was 54 yr ( 4) and median time since menopause was 6 yr (interquartile range: 3-9). Patients were stratified according to FAI levels into two groups: FAI greater than or less than the group median of 2.5. Waist-to-hip ratio (WHR) was significantly higher in the group with FAI>2.5, as well as median dose of Ach for maximal vasodilation [720 (360-3600) ng/min with FAI>2.5 vs 36 (0.36-360) ng/min with FAI <= 2.5; p=0.005]. Maximal vasodilation with SNP was similar in both groups. Positive correlations were observed between Ach doses and maximal vasodilation and FAI (r=0.473, p=0.015), waist (r=0.510, p= 0.011), and WHR (r=0.479, p=0.021). SHBG was negatively correlated with Ach doses (rs=-0.400, p=0.043). Conclusions: This study suggests that FAI, even within normal limits, is related to early changes in endothelial function in healthy post-menopausal women. Longitudinal studies are required to determine the clinical relevance of these findings. (J. Endocrinol. Invest. 33: 239-243, 2010) (C) 2010, Editrice Kurtis
Resumo:
Background: Microalbuminuria in Type 2 diabetes is associated with arterial endothelial dysfunction, but the venous bed was never evaluated. Aim: To study the endothelial function in the venous and arterial bed in patients with Type 2 diabetes with normoalbuminuria or microalbuminuria. Material and methods: We evaluated 28 patients with Type 2 diabetes, glycated hemoglobin (Hbak(1c)) <7.5%, who were classified as normo- (albuminuria <30 mg/24 h; no.=16) or microalbuminuric (albuminuria 30-300 mg/24 h; no.=12). Venous and arterial endothelial function were assessed by the dorsal hand vein technique (venodilation by acetylcholine) and brachial artery flow-mediated vasodilation, respectively. Results: Patients were normotensive (systolic arterial pressure: 131.1 +/- 10.6 mmHg) and on good metabolic control (HbA(1c): 6.6 +/- 0.6%). Microalbuminuric patients presented impaired venous (32.9 +/- 17.4 vs 59.3 +/- 26.5%; p=0.004) and arterial vasodilation (1.8 +/- 0.9 vs 5.1 +/- 2.4; p<0.001), as compared to normoalbuminuric patients. There was a negative correlation between acetylcholine-induced venodilation and albuminuria (r=-0.62; p<0.001) and HbA(1c) (r=-0.41; p=0.032). The same was observed between flow-mediated arterial vasodilation and albuminuria (r=-0.49; p=0.007) and HbA(1c) (r=-0.44; p=0.019). Venous and arterial vasodilation was positively correlated (r=0.50; p=0.007). Conclusions: Both venous and arterial endothelial function are impaired in Type 2 microalbuminuric diabetics, in spite of good metabolic control, suggesting that other factors are involved in its pathogenesis. (J. Endocrinol. Invest. 33: 696-700, 2010) (C) 2010, Editrice Kurtis
Resumo:
Objective Hypertensive rats are more sensitive to the pressor effects of acute ouabain than normotensive rats. We analyzed the effect of chronic ouabain (similar to 8.0 mu g/day, 5 weeks) treatment on the blood pressure of spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats and the contribution of vascular mechanisms. Methods Responses to acetylcholine and phenylephrine were analyzed in isolated tail arteries. Protein expression of endothelial nitric oxide synthase and cyclooxygenase-2 (COX-2) were also investigated. Results Ouabain treatment enhanced blood pressure only in SHRs. The pD(2) for acetylcholine was decreased in arteries from SHRs compared with Wistar-Kyoto rats, and ouabain did not change this parameter. However, ouabain was able to increase the pD(2) to phenylephrine in SHRs. Nitric oxide synthase inhibition with N(G)-nitro-L-arginine methyl ester or potassium channel blockade by tetraetylamonium increased the response to phenylephrine in SHRs, with a smaller increase in response observed in ouabain-treated SHRs. In addition, indomethacin (a COX inhibitor) and ridogrel (a thromboxane A(2) synthase inhibitor and prostaglandin H(2)/thromboxane A(2) receptor antagonist) decreased contraction to phenylephrine in tail rings from ouabain-treated SHRs. Protein expression of endothelial nitric oxide synthase was unaltered following ouabain treatment in SHRs, whereas COX-2 expression was increased. Conclusion Chronic ouabain treatment further increases the raised blood pressure of SHRs. This appears to involve a vascular mechanism, related to a reduced vasodilator influence of nitric oxide and endothelium-derived hyperpolarizing factor and increased production of vasoconstrictor prostanoids by COX-2. These data suggest that the increased plasma levels of ouabain could play an important role in the maintenance of hypertension and the impairment of endothelial function. J Hypertens 27:1233-1242 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Background and aim: given that obesity is an independent risk factor for the development of cardiovascular diseases we decided to investigate the mechanisms involved in microvascular dysfunction using a monosodium glutamate (MSG)-induced model of obesity, which allows us to work on both normotensive and normoglycemic conditions. Methods and results: Male offspring of Wistar rats received MSG from the second to the sixth day after birth. Sixteen-week-old MSG rats displayed higher Lee index, fat accumulation, dyslipidemia and insulin resistance, with no alteration in glycemia and blood pressure. The effect of norepinephrine (NE), which was increased in MSG rats, was potentiated by L-nitro arginine methyl ester (L-NAME) or tetraethylammonium (TEA) and was reversed by indomethacin and NS-398. Sensitivity to acetylcholine (ACh), which was reduced in MSG rats, was further impaired by L-NAME or TEA, and was corrected by indomethacin, NS-398 and tetrahydrobiopterin (BH4). MSG rats displayed increased endothelium-independent relaxation to sodium nitroprusside. A reduced prostacyclin/tromboxane ratio was found in the mesenteric beds of MSG rats. Mesenteric arterioles of MSG rats also displayed reduced nitric oxide (NO) production along with increased reactive oxygen species (ROS) generation; these were corrected by BH4 and either L-NAME or superoxide dismutase, respectively. The protein expression of eNOS and cyclooxygenase (COX)-2 was increased in mesenteric arterioles from MSG rats. Conclusion: Obesity/insulin resistance has a detrimental impact on vascular function. Reduced NO bioavailability and increased ROS generation from uncoupled eNOS and imbalanced release of COX products from COX-2 play a critical role in the development of these vascular alterations (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to evaluate the effect of overstimulation of beta-adrenoceptors on vascular inflammatory mediators. Wistar rats were treated with the beta-adrenoceptor agonist isoproterenol (0.3 mg(.)kg(-1.)day(-1) sc) or vehicle (control) for 7 days. At the end of treatment, the right carotid artery was catheterized for arterial and left ventricular (LV) hemodynamic evaluation. Isoproterenol treatment increased LV weight but did not change hemodynamic parameters. Aortic mRNA and protein expression were quantified by real-time RT-PCR and Western blot analysis, respectively. Isoproterenol enhanced aortic mRNA and protein expression of IL-1 beta (124% and 125%) and IL-6 (231% and 40%) compared with controls but did not change TNF-alpha expression. The nuclear-to-cytoplasmatic protein expression ration of the NF-beta B p65 subunit was increased by isoproterenol treatment (51%); in addition, it reduced the cytoplasmatic expression of I kappa B-alpha (52%) in aortas. An electrophoretic mobility shift assay was performed using the aorta, and increased NF-kappa B DNA binding (31%) was observed in isoproterenol-treated rats compared with controls (P < 0.05). Isoproterenol treatment increased phenylephrine-induced contraction in aortic rigs (P < 0.05), which was significantly reduced by superoxide dismutase (150 U/ml) and sodium salicylate (5 mM). Cotreatment with thalidomide (150 mg(.)kg(-1.)day(-1) for 7 days) also reduced hyperreactivity to phenylephrine induced by isoproterenol. In conclusion, overstimulation of beta-adrenoceptors increased proinflammatory cytokines and upregulated NF-kappa B in the rat aorta. Moreover, local oxidative stress and the proinflammatory state seem to play key roles in the altered vascular reactivity of the rat aorta induced by chronic beta-adrenergic stimulation.
Resumo:
Ischemia and reperfusion injury (IRI) are mainly caused by leukocyte activation, endothelial dysfunction and production of reactive oxygen species. Moreover, IRI can lead to a systemic response affecting distant organs, such as the lungs. The objective was to study the pulmonary inflammatory systemic response after renal IRI. Male C57Bl/6 mice were subjected to 45 min of bilateral renal ischemia, followed by 4, 6, 12, 24 and 48 h of reperfusion. Blood was collected to measure serum creatinine and cytokine concentrations. Bronchoalveolar lavage fluid (BALF) was collected to determine the number of cells and PGE(2) concentration. Expressions of iNOS and COX-2 in lung were determined by Western blot. Gene analyses were quantified by real time PCR. Serum creatinine increased in the IRI group compared to sham mainly at 24 h after IRI (2.57 +/- A 0.16 vs. 0.43 +/- A 0.07, p < 0.01). The total number of cells in BAL fluid was higher in the IRI group in comparison with sham, 12 h (100 x 10(4) +/- A 15.63 vs. 18.1x10(4) +/- A 10.5, p < 0.05) 24 h (124 x 10(4) +/- A 8.94 vs. 23.2x10(4) +/- A 3.5, p < 0.05) and 48 h (79 x 10(4) +/- A 15.72 vs. 22.2 x 10(4) +/- A 4.2, p < 0.05), mainly by mononuclear cells and neutrophils. Pulmonary COX-2 and iNOS were up-regulated in the IRI group. TNF-alpha, IL-1 beta, MCP-1, KC and IL-6 mRNA expression were up-regulated in kidney and lungs 24 h after renal IRI. ICAM-1 mRNA was up-regulated in lungs 24 h after renal IRI. Serum TNF-alpha, IL-1 beta and MCP-1 and BALF PGE(2) concentrations were increased 24 h after renal IRI. Renal IRI induces an increase of cellular infiltration, up-regulation of COX-2, iNOS and ICAM-1, enhanced chemokine expression and a Th1 cytokine profile in lung demonstrating that the inflammatory response is indeed systemic, possibly leading to an amplification of renal injury.
Resumo:
Chronic stimulation of beta-adrenoceptors with isoproterenol induces alteration of vascular reactivity and increases local proinflammatory cytokines. We investigated whether fenofibrate and pioglitazone, PPAR-alpha and -gamma agonists, respectively, improve the changes in vascular reactivity induced by isoproterenol. Wistar rats received isoproterenol (0.3 mg.kg(-1).day(-1), SC) or vehicle (CT) plus fenofibrate (alpha, 100 mg.kg(-1).day(-1), PO), pioglitazone (gamma, 2.5 mg.kg(-1).day(-1), PO), or water for 7 days. In aortas, isoproterenol treatment enhanced the maximal response (Rmax) to phenylephrine (10(-10) to 10(-4) M) compared to CT as previously demonstrated. The effects of endothelium removal (E-) or L-NAME incubation (100 mu M) on the phenylephrine response were smaller in isoproterenol-treated animals compared to CT while superoxide dismutase (SOD, 150 U/mL) significantly reduced the Rmax to phenylephrine to CT levels. Neither fenofibrate nor pioglitazone changed the effects induced by isoproterenol in aorta. E-, L-NAME, or SOD effects were similar between CT alpha and CT. However, pioglitazone per se increased Rmax to phenylephrine (CT: 59 +/- 4 versus CT gamma: 72 +/- 5 % of contraction to KCl). E- or L-NAME effects were reduced in CT gamma compared to CT, and SOD normalized the altered reactivity to phenylephrine in the CT gamma group. In conclusion, neither fenofibrate nor pioglitazone ameliorates the altered vascular reactivity present in aorta from isoproterenol-treated rats. Moreover, pioglitazone per se induced endothelial dysfunction and increased phenylephrine-induced contraction in aorta.
Resumo:
The polymorphisms of endothelial nitric oxide synthase (eNOS) are associated with reduced eNOS activity. Aerobic exercise training (AEX) may influence resting nitric oxide (NO) production, oxidative stress and blood pressure. The purpose of this study was to investigate the effect of AEX on the relationship among blood pressure, eNOS gene polymorphism and oxidative stress in pre-hypertensive older people. 118 pre-hypertensive subjects (59 +/- A 6 years) had blood samples collected after a 12 h overnight fast for assessing plasma NO metabolites (NOx) assays, thiobarbituric acid reactive substances (T-BARS) and superoxide dismutase activity (ecSOD). eNOS polymorphism (T-786C and G-894T) was done by standard PCR methods. All people were divided according to the genotype results (G1: TT/GG, G2: TT/GT + TT, G3: TC + CC/GG, G4: TC + CC/GT + TT). All parameters were measured before and after 6 months of AEX (70% of VO(2 max)). At baseline, no difference was found in systolic and diastolic blood pressure, ecSOD and T-BARS activity. Plasma NOx levels were significantly different between G1 (19 +/- A 1 mu M) and G4 (14.2 +/- A 0.6 mu M) and between G2 (20.1 +/- A 1.7 mu M) and G4 (14.2 +/- A 0.6 mu M). Therefore, reduced NOx concentration in G4 group occurred only when the polymorphisms were associated, suggesting that these results are more related to genetic factors than NO-scavenging effect. After AEX, the G4 increased NOx values (17.2 +/- A 1.2 mu M) and decreased blood pressure. G1, G3 and G4 decreased T-BARS levels. These results suggest the AEX can modulate the NOx concentration, eNOS activity and the relationship among eNOS gene polymorphism, oxidative stress and blood pressure especially in C (T-786C) and T (G-894T) allele carriers.
Resumo:
The P2Y(12) receptor antagonist clopidogrel blocks platelet aggregation, improves systemic endothelial nitric oxide bioavailability and has anti-inflammatory effects. Since P2Y(12) receptors have been identified in the vasculature, we hypothesized that clopidogrel ameliorates Angll (angiotensin II)-induced vascular functional changes by blockade of P2Y(12) receptors in the vasculature. Male Sprague Dawley rats were infused with Angll (60 ng/min) or vehicle for 14 days. The animals were treated with clopidogrel (10 mg . kg(-1) of body weight . day(-1)) or vehicle. Vascular reactivity was evaluated in second-order mesenteric arteries. Clopidogrel treatment did not change systolic blood pressure [(mmHg) control-vehicle, 117 +/- 7.1 versus control-clopidogrel, 125 +/- 4.2; Angll vehicle, 197 +/- 10.7 versus Angll clopidogrel, 198 +/- 5.2], but it normalized increased phenylephrine-induced vascular contractions [(%KCI) vehicle-treated, 182.2 +/- 18% versus clopidogrel, 133 +/- 14%), as well as impaired vasodilation to acetylcholine [(%) vehicle-treated, 71.7 +/- 2.2 versus clopidogrel, 85.3 +/- 2.8) in Angll-treated animals. Vascular expression of P2Y(12) receptor was determined by Western blot. Pharmacological characterization of vascular P2Y(12) was performed with the P2Y(12) agonist 2-MeS-ADP [2-(methylthio) adenosine 5`-trihydrogen diphosphate trisodium]. Although 2-MeS-ADP induced endothelium-dependent relaxation [(Emax %) = 71 +/- 12%) as well as contractile vascular responses (Emax % = 83 +/- 12%), these actions are not mediated by P2Y(12) receptor activation. 2-MeS-ADP produced similar vascular responses in control and Angll rats. These results indicate potential effects of clopidogrel, such as improvement of hypertension-related vascular functional changes that are not associated with direct actions of clopidogrel in the vasculature, supporting the concept that activated platelets contribute to endothelial dysfunction, possibly via impaired nitric oxide bioavailability.
Resumo:
The aim of this study was to investigate endothelial venous function, mflammatory markers, and systemic oxidative stress after an oral lipid overload (OLO). We studied 18 healthy adults (9 men; age, 29.2 +/- 0.9 years; body mass index, 22.3 +/- 0.4 kg/m(2)). Blood samples were collected in the fasting state and 3, 4, and 5 hour after the OLO (1000 kcal, 58% fat) for metabolic variables, oxidative stress, inflammatory markers, adiponectin, and resistin. Changes in vein diameter to phenylephrine, acetylcholine, and sodium nitroprusside (dorsal hand vein technique) were measured before and after the OLO. Oral lipid overload increased triglycerides (61 +/- 6 vs 134 +/- 17 mg/dL, P <.001), insulin (7.2 +/- 0.8 vs 10.7 +/- 1.3 mu U/mL, P <.05), and resistin (5.38 +/- 0.5 vs 6.81 +/- 0.7 ng/mL, P <.05) and reduced antioxidant capacity (plasma total antioxidant capacity: 186.7 +/- 56 vs 161.8 +/- 50 U Trolox per microliter plasma, P <.01), vascular reactivity (171.3 +/- 85 vs 894.4 +/- 301 ng/mL, P <.001), and maximum acetylcholine venodilation (105.9% +/- 9% vs 61.0% +/- 7%, P <.05). No changes were observed for sodium nitroprusside. Post-OLO triglycerides were positively correlated with phenylephrine dose (rho = 0.38, P <.05) and resistin (rho = 0.43, P <.01) and negatively correlated with the maximum acetylcholine venodilation (rho = -0.36, P <.05). In conclusion, an OLO impaired venoconstriction responsiveness in healthy subjects, probably because of a reduction in the antioxidant capacity. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
To characterize the roles of C-peptide in vascular homeostatic processes, we examined the genes regulated by C-peptide in LEII mouse lung microvascular endothelial cells. Treatment of the cells with C-peptide increased the expression of c-Jun N-terminal kinase 1 (JNK1) mRNA dose-dependently, accompanied by an increase in JNK1 protein content. Prior treatment of the cells with PD98059, an ERK kinase inhibitor or SB203580, a p38MAPK inhibitor, abrogated the C-peptide-elicited JNK1 mRNA expression. These results indicate that C-peptide increases JNK1 protein levels, possibly through ERK- and p38MAPK-dependent activation of JNK. gene transcription.