34 resultados para Sugar Creek Watershed (Crawford County, Ill.)
Resumo:
Osmotic dehydration is becoming more popular as a complementary treatment in the processing of dehydrated foods, since it presents some advantages such as minimising heat damage to the colour and flavour, inhibiting enzymatic browning and thus dispensing the addition of sulphite and, mainly, reducing energy costs. The objective of the present study was to evaluate the effect of using inverted sugar and sucrose syrups as osmotic agents in the dehydration of mango. The conditions used in the dehydration process were: syrup/fruit ratio of 3:1 (v/w); temperature of 45ºC and constant stirring. The in natura and osmo-dehydrated fruits were evaluated in relation to pH, moisture content, water activity (a w) and soluble solids (ºBrix). Solids incorporation and loss in mass after the dehydration process were also determined. The sensory acceptance of the in natura and osmo-dehydrated fruits was determined for the attributes of aroma, flavour, texture and overall acceptance using a hedonic scale. Osmotic dehydration resulted in a reduction in moisture content and water activity, an increase in Brix and maintenance of the pH. The treatment with inverted sugar syrup resulted in more significant alterations in moisture content, a w, Brix, solids incorporation and loss in mass than the treatment with sucrose syrup. Mangos osmo-dehydrated with inverted sugar (55.3% inversion rate) syrup obtained acceptance similar to in natura mangos, this treatment being considered the most adequate for dehydration purposes.
Resumo:
The study objective was to examine differentials in time trends and predictors of deaths assigned to symptoms, signs and ill-defined conditions in comparison with other ill-defined conditions (ill-defined cardiovascular diseases, cancer and injury) in a population-based cohort study. Of 1,606 baseline participants aged 60 years and over, 524 died during 9-year follow-up and were included in this study. Deaths coded to "symptoms" declined by 77% in the period from 1997-1999 to 2003-2005. Deaths coded to other ill-defined conditions remained unchanged. The calendar period 2003-2005 (RR = 0.25; 95%CI: 0.09-0.70) and in-hospital deaths (RR = 0.16; 95%CI: 0.08-0.34) were independently associated with "symptoms", but not with other ill-defined conditions. Baseline socio-demographic characteristics and chronic diseases were not predictors of these outcomes. International and national agencies have focused on the reduction of deaths assigned to "symptoms" to improve the registration of vital statistics, while other ill-defined conditions have received little attention. Our data provide evidence supporting the need to redress this situation.
Resumo:
Objective To study the role of energy derived from sugar (both table sugar and sugar added to processed foods) in the total energy content of food purchases in Brazil.Design Food purchase data were collected during a national household budget survey carried out between June 2002 and July 2003 on a probabilistic sample representative of all households in the country. The amount of food purchased in this 12-month period was transformed into energy and energy from sugar using food composition tables. Multiple linear regression models were used to study the association between amount of energy from sugar and total energy content of food purchases, controlling for sociodemographic variables and potential interactions between these variables and sugar purchases.Results There was a positive and significant association between energy from sugar and total household energy purchases. A 1 kJ increase in sugar purchase corresponded to a 3·637 kJ increase in total energy. In the absence of expenditure on meals outside the home, i.e. when household food purchases tend to approximate actual food consumption by household members, sugar purchase of 1926·35 kJ/d (the 90th percentile of the distribution of sugar purchases in Brazil) was associated, depending on income strata, with total energy purchase over 40\201360 per cent of the recommended daily value for energy intake in Brazil.Conclusions The present results corroborate the recommendations of the WHO and the Brazilian Ministry of Health regarding limiting the consumption of sugar
Resumo:
Background: Lignin and hemicelluloses are the major components limiting enzyme infiltration into cell walls. Determination of the topochemical distribution of lignin and aromatics in sugar cane might provide important data on the recalcitrance of specific cells. We used cellular ultraviolet (UV) microspectrophotometry (UMSP) to topochemically detect lignin and hydroxycinnamic acids in individual fiber, vessel and parenchyma cell walls of untreated and chlorite-treated sugar cane. Internodes, presenting typical vascular bundles and sucrose-storing parenchyma cells, were divided into rind and pith fractions. Results: Vascular bundles were more abundant in the rind, whereas parenchyma cells predominated in the pith region. UV measurements of untreated fiber cell walls gave absorbance spectra typical of grass lignin, with a band at 278 nm and a pronounced shoulder at 315 nm, assigned to the presence of hydroxycinnamic acids linked to lignin and/or to arabino-methylglucurono-xylans. The cell walls of vessels had the highest level of lignification, followed by those of fibers and parenchyma. Pith parenchyma cell walls were characterized by very low absorbance values at 278 nm; however, a distinct peak at 315 nm indicated that pith parenchyma cells are not extensively lignified, but contain significant amounts of hydroxycinnamic acids. Cellular UV image profiles scanned with an absorbance intensity maximum of 278 nm identified the pattern of lignin distribution in the individual cell walls, with the highest concentration occurring in the middle lamella and cell corners. Chlorite treatment caused a rapid removal of hydroxycinnamic acids from parenchyma cell walls, whereas the thicker fiber cell walls were delignified only after a long treatment duration (4 hours). Untreated pith samples were promptly hydrolyzed by cellulases, reaching 63% of cellulose conversion after 72 hours of hydrolysis, whereas untreated rind samples achieved only 20% hydrolyzation. Conclusion: The low recalcitrance of pith cells correlated with the low UV-absorbance values seen in parenchyma cells. Chlorite treatment of pith cells did not enhance cellulose conversion. By contrast, application of the same treatment to rind cells led to significant removal of hydroxycinnamic acids and lignin, resulting in marked enhancement of cellulose conversion by cellulases.
Resumo:
The transfer of carbon (C) from Amazon forests to aquatic ecosystems as CO(2) supersaturated in groundwater that outgases to the atmosphere after it reaches small streams has been postulated to be an important component of terrestrial ecosystem C budgets. We measured C losses as soil respiration and methane (CH(4)) flux, direct CO(2) and CH(4) fluxes from the stream surface and fluvial export of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate C over an annual hydrologic cycle from a 1,319-ha forested Amazon perennial first-order headwater watershed at Tanguro Ranch in the southern Amazon state of Mato Grosso. Stream pCO(2) concentrations ranged from 6,491 to 14,976 mu atm and directly-measured stream CO(2) outgassing flux was 5,994 +/- A 677 g C m(-2) y(-1) of stream surface. Stream pCH(4) concentrations ranged from 291 to 438 mu atm and measured stream CH(4) outgassing flux was 987 +/- A 221 g C m(-2) y(-1). Despite high flux rates from the stream surface, the small area of stream itself (970 m(2), or 0.007% of watershed area) led to small directly-measured annual fluxes of CO(2) (0.44 +/- A 0.05 g C m(2) y(-1)) and CH(4) (0.07 +/- A 0.02 g C m(2) y(-1)) per unit watershed land area. Measured fluvial export of DIC (0.78 +/- A 0.04 g C m(-2) y(-1)), DOC (0.16 +/- A 0.03 g C m(-2) y(-1)) and coarse plus fine particulate C (0.001 +/- A 0.001 g C m(-2) y(-1)) per unit watershed land area were also small. However, stream discharge accounted for only 12% of the modeled annual watershed water output because deep groundwater flows dominated total runoff from the watershed. When C in this bypassing groundwater was included, total watershed export was 10.83 g C m(-2) y(-1) as CO(2) outgassing, 11.29 g C m(-2) y(-1) as fluvial DIC and 0.64 g C m(-2) y(-1) as fluvial DOC. Outgassing fluxes were somewhat lower than the 40-50 g C m(-2) y(-1) reported from other Amazon watersheds and may result in part from lower annual rainfall at Tanguro. Total stream-associated gaseous C losses were two orders of magnitude less than soil respiration (696 +/- A 147 g C m(-2) y(-1)), but total losses of C transported by water comprised up to about 20% of the +/- A 150 g C m(-2) (+/- 1.5 Mg C ha(-1)) that is exchanged annually across Amazon tropical forest canopies.
Resumo:
Laminar and pulsed flows typical of multi-commuted and multi-pumping flow systems, were evaluated in relation to analytical procedures carried out at high temperatures. As application, the spectrophotometric determination of total reducing sugars (TRS, hydrolyzed sucrose plus reducing sugars) in sugar-cane juice and molasses was selected. The method involves in-line hydrolysis of sucrose and alkaline degradation of the reducing sugars at about 98 degrees C. Better results were obtained with pulsed flows, due to the efficient radial mass transport inherent to the multi-pumping flow system. The proposed system presents favorable characteristics of ruggedness, analytical precision (r.s.d. < 0.013 for typical samples), stability (no measurable baseline drift during 4-h working periods), linearity of the analytical curve (r > 0.992, n = 5, 0.05-0.50% w/v TRS) and sampling rate (65 h(-1)). Results are in agreement with ion chromatography.
Resumo:
Laser induced breakdown spectrometry (LIBS) was applied for the determination of macro (P, K, Ca, Mg) and micronutrients (B, Cu, Fe, Mn and Zn) in sugar cane leaves, which is one of the most economically important crops in Brazil. Operational conditions were previously optimized by a neuro-genetic approach, by using a laser Nd:YAG at 1064 nm with 110 mJ per pulse focused on a pellet surface prepared with ground plant samples. Emission intensities were measured after 2.0 mu s delay time, with 4.5 mu s integration time gate and 25 accumulated laser pulses. Measurements of LIBS spectra were based on triplicate and each replicate consisted of an average of ten spectra collected in different sites (craters) of the pellet. Quantitative determinations were carried out by using univariate calibration and chemometric methods, such as PLSR and iPLS. The calibration models were obtained by using 26 laboratory samples and the validation was carried out by using 15 test samples. For comparative purpose, these samples were also microwave-assisted digested and further analyzed by ICP OES. In general, most results obtained by LIBS did not differ significantly from ICP OES data by applying a t-test at 95% confidence level. Both LIBS multivariate and univariate calibration methods produced similar results, except for Fe where better results were achieved by the multivariate approach. Repeatability precision varied from 0.7 to 15% and 1.3 to 20% from measurements obtained by multivariate and univariate calibration, respectively. It is demonstrated that LIBS is a powerful tool for analysis of pellets of plant materials for determination of macro and micronutrients by choosing calibration and validation samples with similar matrix composition.
Resumo:
Many works have shown the potential of the Brazilian sugarcane industry as an electricity supplier. However, few studies have studied how this potential could be achieved without jeopardizing the production of sugar and ethanol. Also, the impact of modifications in the cogeneration plant on the costs of production of sugar and ethanol has not been evaluated. This paper presents an approach to the problem of exergy optimization of cogeneration systems in sugarcane mills. A general model to the sugar and ethanol production processes is developed based on data supplied by a real plant, and an exergy analysis is performed. A discussion is made about the variables that most affect the performance of the processes. Then, a procedure is presented to evaluate modifications in the cogeneration system and in the process, and their impact on the production costs of sugar, ethanol and electricity. Furthermore, a discussion on the renewability of processes is made based on an exergy index of renewability. As a general conclusion, besides adding a new revenue to the mill, the generation of excess electricity improves the exergo-environmental performance of the mill as a whole. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The evaporators of sugar plants in Brazil have used carbon steel intensively because of it is, a low priced material, which possesses inferior corrosion resistance. The materials more indicated for the substitution of carbon steel are stainless steels, however they are considered expensive. The environmental and financial performances of evaporator pipes constructed with carbon steel and with types AISI 304 444 and 439 stainless steel were evaluated. For the environmental evaluation, the Life Cycle Assessment (LCA) methodology Was used and it, revealed that stainless steel is more environmentally efficient than carbon steel. The life cycle costing (LCC) technique was the tool chosen for the financial evaluation and it showed that stainless steel is a better investment option compared to carbon steel. The results also indicate that LCA and LCC methodologies must be used together Therefore, it can he seen that safer environmental products can come to be the most profitable investment options.
Resumo:
This paper analyzes the convergence of the constant modulus algorithm (CMA) in a decision feedback equalizer using only a feedback filter. Several works had already observed that the CMA presented a better performance than decision directed algorithm in the adaptation of the decision feedback equalizer, but theoretical analysis always showed to be difficult specially due to the analytical difficulties presented by the constant modulus criterion. In this paper, we surmount such obstacle by using a recent result concerning the CM analysis, first obtained in a linear finite impulse response context with the objective of comparing its solutions to the ones obtained through the Wiener criterion. The theoretical analysis presented here confirms the robustness of the CMA when applied to the adaptation of the decision feedback equalizer and also defines a class of channels for which the algorithm will suffer from ill-convergence when initialized at the origin.
Resumo:
Accurate price forecasting for agricultural commodities can have significant decision-making implications for suppliers, especially those of biofuels, where the agriculture and energy sectors intersect. Environmental pressures and high oil prices affect demand for biofuels and have reignited the discussion about effects on food prices. Suppliers in the sugar-alcohol sector need to decide the ideal proportion of ethanol and sugar to optimise their financial strategy. Prices can be affected by exogenous factors, such as exchange rates and interest rates, as well as non-observable variables like the convenience yield, which is related to supply shortages. The literature generally uses two approaches: artificial neural networks (ANNs), which are recognised as being in the forefront of exogenous-variable analysis, and stochastic models such as the Kalman filter, which is able to account for non-observable variables. This article proposes a hybrid model for forecasting the prices of agricultural commodities that is built upon both approaches and is applied to forecast the price of sugar. The Kalman filter considers the structure of the stochastic process that describes the evolution of prices. Neural networks allow variables that can impact asset prices in an indirect, nonlinear way, what cannot be incorporated easily into traditional econometric models.
Resumo:
Owing to its toxicity, aluminum (Al), which is one of the most abundant metals, inhibits the productivity of many cultures and affects the microbial metabolism. The aim of this work was to investigate the capacity of sugar cane vinasse to mitigate the adverse effects of Al on cell growth, viability, and budding, as the likely result of possible chelating action. For this purpose, Fleischmann`s yeast (Saccharomyces cerevisiae) was used in growth tests performed in 125-mL Erlenmeyer flasks containing 30 mL of YED medium (5.0 g/L yeast extract plus 20 g/L glucose) supplemented with the selected amounts of either vinasse or Al in the form of AlCl(3) center dot A H(2)O. Without vinasse, the addition of increasing levels of Al up to 54 mg/L reduced the specific growth rate by 18%, whereas no significant reduction was observed in its presence. The toxic effect of Al on S. cerevisiae growth and the mitigating effect of sugar cane vinasse were quantified by the exponential model of Ciftci et al. (Biotechnol Bioeng 25:2007-2023, 1983). The cell viability decreased from 97.7% at the start to 84.0% at the end of runs without vinasse and to 92.3% with vinasse. On the other hand, the cell budding increased from 7.62% at the start to 8.84% at the end of runs without vinasse and to 17.8% with vinasse. These results demonstrate the ability of this raw material to stimulate cell growth and mitigate the toxic effect of Al.
Resumo:
Riparian forests are protected by Brazilian law to preserve rivers and their margins. A sugar cane field adjacent to a strip of young riparian forest bordering an older riparian forest along a stream was used to study the riparian forest as a buffer zone to prevent pesticides pollution. Concentrations of the herbicides diuron, hexazinone and tebuthiuron were determined in different soil layers of a Red Yellow Oxisol during 2003 and 2004. The determination was done by High Performance Liquid Chromatography with reverse phase C-18 column, through two mobile phases. Diuron and hexazinone concentration diminished between the sugar cane and riparian forest as buffer strip demonstrating a protective effect. However, tebuthiuron had about four times higher concentrations in the old riparian forest compared to the other areas. Concentrations were higher in the surface and decreased in deeper soil layers in the old riparian forest suggesting that this herbicide probably was introduced by air pollution. This pesticide concentrated in the canopy could be washed by rain to the soil adjacent to the stream. Our data suggest that climate conditions were responsible for enhanced volatilization exposing the old riparian forest to more air pollution that was captured by the higher canopy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The recognition of temporally stable locations with respect to soil water content is of importance for soil water management decisions, especially in sloping land of watersheds. Neutron probe soil water content (0 to 0.8 m), evaluated at 20 dates during a year in the Loess Plateau of China, in a 20 ha watershed dominated by Ust-Sandiic Entisols and Aeolian sandy soils, were used to define their temporal stability through two indices: the standard deviation of relative difference (SDRD) and the mean absolute bias error (MABE). Specific concerns were (a) the relationship of temporal stability with soil depth, (b) the effects of soil texture and land use on temporal stability, and (c) the spatial pattern of the temporal stability. Results showed that temporal stability of soil water content at 0.2 m was significantly weaker than those at the soil depths of 0.6 and 0.8 m. Soil texture can significantly (P<0.05) affect the stability of soil water content except for the existence of an insignificant difference between sandy loam and silt loam textures, while temporal stability of areas covered by bunge needlegrass land was not significantly different from those covered by korshinsk peashrub. Geostatistical analysis showed that the temporal stability was spatially variable in an organized way as inferred by the degree of spatial dependence index. With increasing soil depth, the range of both temporal stability indices showed an increasing trend, being 65.8-120.5 m for SDRD and 148.8-214.1 m for MABE, respectively. This study provides a valuable support for soil water content measurements for soil water management and hydrological applications on sloping land areas. (C) 2010 Elsevier B.V. All rights reserved.