226 resultados para MOTILITY-STIMULATING PROTEIN
Resumo:
We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5`-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5`-monophosphate, and PP(i) by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5`-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PPi were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1- containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PPi by TNAP-, and TNAP plus NPP1- containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.
Resumo:
The PilZ protein was originally identified as necessary for type IV pilus (T4P) biogenesis. Since then, a large and diverse family of bacterial PilZ homology domains have been identified, some of which have been implicated in signaling pathways that control important processes, including motility, virulence and biofilm formation. Furthermore, many PilZ homology domains, though not PilZ itself, have been shown to bind the important bacterial second messenger bis(3`-> 5`)cyclic diGMP (c-diGMP). The crystal structures of the PilZ orthologs from Xanthomonas axonopodis pv Citri (PilZ(XAC1133), this work) and from Xanthomonas campestris pv campestris (XC1028) present significant structural differences to other PilZ homologs that explain its failure to bind c-diGMP. NMR analysis of PilZ(XAC1133) shows that these structural differences are maintained in solution. In spite of their emerging importance in bacterial signaling, the means by which NZ proteins regulate specific processes is not clear. In this study, we show that PilZ(XAC1133) binds to PilB, an ATPase required for TV polymerization, and to the EAL domain of FiMX(XAC2398), which regulates TV biogenesis and localization in other bacterial species. These interactions were confirmed in NMR, two-hybrid and far-Western blot assays and are the first interactions observed between any PilZ domain and a target protein. While we were unable to detect phosphodiesterase activity for FimXX(AC2398) in vitro, we show that it binds c-diGMP both in the presence and in the absence of PilZ(XAC1133). Site-directed mutagenesis studies for conserved and exposed residues suggest that PilZ(XAC1133) interactions with FimX(XAC2398) and PilB(XAC3239) are mediated through a hydrophobic surface and an unstructured C-terminal extension conserved only in PilZ orthologs. The FimX-PilZ-PilB interactions involve a full set of ""degenerate"" GGDEF, EAL and PilZ domains and provide the first evidence of the means by which PilZ orthologs and FimX interact directly with the TP4 machinery. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: Recent studies have supported the concept of ""fetal programming"" which suggests that during the intrauterine development the fetus may be programmed to develop diseases in adulthood. The possible effects of in utero protein restriction on sexual development of rat male offspring were evaluated in the present study. Methods: Pregnant Wistar rats were divided into two experimental groups: one group treated with standard chow (SC, n = 8, 17% protein) and the other group treated with hypoproteic chow (HC, n = 10, 6% protein) throughout gestation. After gestation the two experimental groups received standard chow. To evaluate the possible late reproductive effects of in utero protein restriction, the male offspring of both groups were assessed at different phases of sexual development: prepubertal (30 days old); peripubertal (60 days old); adult (90 days old). Student's t test and Mann-Whitney test were utilized. Differences were considered significant when p < 0.05. Results: We found that in utero protein restriction reduced the body weight of male pups on the first postnatal day and during the different sexual development phases (prepubertal, peripubertal and adult). During adulthood, Sertoli cell number, sperm motility and sperm counts in the testis and epididymal cauda were also reduced in HC. Furthermore, the numbers of sperm presenting morphological abnormalities and cytoplasmic drop retention were higher in HC. Conclusions: In conclusion, in utero protein restriction, under these experimental conditions, causes growth delay and alters male reproductive-system programming in rats, suggesting impairment of sperm quality in adulthood.
Resumo:
The aim of this Study was to determine if protein-energy malnutrition Could affect the hematologic response to granulocyte colony-stimulating factor (G-CSF). Swiss mice were fled a low-protein diet containing 4% protein, whereas control mice were fed a 20% protein-containing diet. After the malnourished group lost 20% of their original body weight, the mice were subdivided in 2 treatment groups, and hematopoietic parameters were studied. Mice were injected with either 8 mu g/kg per day of G-CSF or saline twice daily for 4 days. Malnourished mice developed anemia with reticulopenia and leukopenia with depletion of granulocytes and lymphocytes. Both malnourished and control mice treated with G-CSF showed a significant increase in neutrophils; however, in the control group, this increase was more pronounced compared to the malnourished group (4.5-fold and 3.4-fold, respectively). Granulocyte colony-stimulating factor administration increased bone marrow blastic (P < .001) and granulocytic (P < .01) compartments in the controls bill had no significant effect oil these hematopoietic compartments in the Malnourished animals (P = .08 and P = .62, respectively). We report that malnourished mice display an impaired response to G-CSF, which contributes to the decreased production of leukocytes in protein-energy malnutrition. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Malnutrition modifies resistance to infection by impairing a number of physiological processes including hematopoesis and the immune response. In this study, we examined the production of Interleukin-4 (IL-4) and IL-10 in response to lipopolysaccharide (LPS) and also evaluated the cellularity of the blood, bone marrow, and spleen in a mouse model of protein-energy malnutrition. Two-month-old male Swiss mice were subjected to protein-energy malnutrition (PEM) with a low-protein diet (4%) as compared to the control diet (20%). When the experimental group lost approximately 20% of their original body weight, the animals from both groups received 1.25 mu g of LPS intravenously. The Cells ill the blood, bone marrow, and spleen were counted, and circulating levels of IL-4 and IL-10 were evaluated in animals stimulated with LPS. Cells from the spleen, bone marrow, and peritoneal cavity of non-inoculated animals were collected for Culture to evaluate the production of IL-4 and IL-10 after stimulating these cells with 1.25 mu g of LPS in vitro. Malnourished animals presented leucopenia and a severe reduction in bone marrow, spleen, and peritoneal cavity cellularity before and after Stimulus with LPS. The circulating levels of IL-10 were increased in malnourished animals inoculated with LPS when compared to control animals, although the levels of IL-4 did not differ. In cells cultured with LPS, we observed high levels of IL-10 in the bone marrow cells of malnourished animals. These findings suggest that malnourished mice present a deficient immune response to LPS. These alterations may be partly responsible for the immunodeficiency observed in these malnourished mice.
Resumo:
Malignant melanoma is one of the most lethal cancers. Nowadays, several anti-melanoma therapies have been employed. However, the poor prognosis and/or the increased toxicity of those treatments clearly demonstrate the requirement of searching for new drugs or novel combined chemotherapeutic protocols, contemplating both effectiveness and low toxicity. Guanosine (Guo) has been used in combination with acriflavina to potentiate the latter`s antitumor activity, through still unknown mechanisms. Here, we show that Guo induces B16F10 melanoma cell differentiation, attested by growth arrest, dendrite-like outgrowth and increased melanogenesis, and also reduced motility. A sustained ERK 1/2 phosphorylation was observed after Guo treatment and ERK inhibition led to blockage of dendritogenesis. Intracellular cyclic AMP was not involved in ERK activation, since its levels remained unchanged. Protein kinase C (PKC), in contrast to phospholipase C (PLC), inhibition completely prevented ERK activation. While the classical melanoma differentiation agent forskolin activates cAMP-PKA-Raf-MEK-ERK pathway in B16F10 cells, here we suggest that a cAMP-independent, PKC-ERK axis is involved in Guo-induced B16F10 differentiation. Altogether, our results show that Guo acts as a differentiating agent, with cytostatic rather than cytotoxic properties, leading to a decreased melanoma malignancy. Thus, we propose that Guo may be envisaged in combination with lower doses of conventional anti-melanoma drugs, in an attempt to prevent or diminish their adverse effects. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Purpose: alpha-Melanocyte stimulating hormone protects kidneys against ischemia and sepsis induced acute kidney injury in rodents. We examined the efficacy of a-melanocyte stimulating hormone analogue AP214 to protect against acute kidney injury in higher vertebrates. Materials and Methods: We performed a prospective, blinded, randomized, placebo controlled study in 26 pigs. Laparoscopic technique was used for left nephrectomy and to induce complete warm ischemia in the right kidney for 120 minutes. AP214 (200 mu g/kg intravenously) was administered daily on the day of surgery and for 5 days thereafter. Kidney function was measured for 9 days. We measured changes in serum creatinine, estimated glomerular filtration rate, serum C-reactive protein and urine interleukin-18. Results: In the placebo control and AP214 groups mean peak serum creatinine was 10.2 vs 3.92 mg/dl and the estimated glomerular filtration rate nadir was 22.9 vs 62.6 ml per minute per kg (each p = 0.001). Functional nadir occurred at 72 vs 24 hours in the control vs AP214 groups. Estimated glomerular filtration rate outcome on postoperative day 9 was 118 vs 156 ml per minute per kg in the control vs AP214 groups (p = 0.04). Conclusions: We noted a robust renoprotective effect of AP214. A similar AP214 effect may be observed in humans. Future research includes mechanistic studies in pigs and a phase II human clinical trial of AP214 in kidney transplant and partial nephrectomy populations.
Resumo:
Granulocyte-colony stimulating factor (G-CSF) is a current pharmacological approach to increase peripheral neutrophil counts after anti-tumor therapies. Pain is most relevant side effect of G-CSF in healthy volunteers and cancer patients. Therefore, the mechanisms of G-CSF-induced hyperalgesia were investigated focusing on the role of spinal mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated kinase). JNK (Jun N-terminal Kinase) and p38, and PI(3)K (phosphatidylinositol 3-kinase). G-CSF induced dose (30-300 ng/paw)-dependent mechanical hyperalgesia, which was inhibited by local post-treatment with morphine. This effect of morphine was reversed by naloxone (opioid receptor antagonist). Furthermore, G-CSF-induced hyperalgesia was inhibited in a dose-dependent manner by intrathecal pre-treatment with ERK (PD98059), JNK (SB600125), p38 (SB202190) or PI(3)K (wortmanin) inhibitors. The co-treatment with MAP kinase and PI(3)K inhibitors, at doses that were ineffective as single treatment, significantly inhibited G-CSF-induced hyperalgesia. Concluding, in addition to systemic opioids, peripheral opioids as well as spinal treatment with MAP kinases and PI(3)K inhibitors also reduce G-CSF-induced pain. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Squamous cell carcinoma of the oral cavity (OSCC) is a malignancy characterized by a high degree of local aggression and metastasis to cervical lymph nodes. Tetraspanins are proteins with functional roles in a wide array of cellular processes and are reported to be associated with tumor progression. The present study investigated the expression of the CD9, CD37, CD63, CD81 and CD82 tetraspanins in OSCC using immunohistochemistry (IHC) and quantitative Real Time-PCR (qRT-PCR). Tissue microarray (TMA) analysis of samples from 179 cases of OSCC and 10 normal samples oral mucosa were evaluated immunomorphologically. We analyzed CD9 and CD82 expression by qRT-PCR in 66 OSCC cases and 4 normal samples of oral mucosa. Expression of CD63, CD37 and CD81 was not detected in the samples studied. CD82 was downregulated or negative in 127 of 179 (80%) specimens; no correlation was observed between CD82 expression, clinicopathological parameters, disease-free survival and 5-year overall survival. CD9 expression was downregulated or negative in 75 of 129 (42%) OSCC samples. Loss of CD9 expression in OSCC samples correlated with the incidence of lymph node metastasis (p = 0.017). Disease-free survival and the 5-year overall survival of patients with downregulated or negative CD9 expression were significantly lower than in patients with positive CD9 expression (p = 0.010 and p = 0.071, respectively). No correlation was found between CD9 or CD82 expression and clinicopathological parameters by qRT-PCR. Our results suggest that the downregulation or lack of expression of the CD9 protein might indicate a more aggressive of OSCC. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background/Aim. Granulocyte colony-stimulating factor (G-CSF) reduces myocardial injury and improves cardiac function after myocardial infarction (MI). We investigated the early alterations provided by G-CSF and the chronic repercussions in infarcted rats. Methods. Male Wistar rats (200-250g) received vehicle (MI) or G-CSF (MI-GCSF) (50 mu g/kg, sc) at 7, 3 and 1 days before MI surgery. Afterwards MI was produced and infarct size was measured 1 and 15 days after surgery. Expression of anti-and proapoptotic proteins was evaluated immediately before surgery. 24 hours after surgery, apoptotic nuclei were evaluated. Two weeks after MI, left ventricular (LV) function was evaluated, followed by in situ LV diastolic pressure-volume evaluation. Results. Infarct size was decreased by 1 day pretreatment before occlusion (36 +/- 2.8 vs. 44 +/- 2.1% in MI; P<0.05) and remained reduced at 15 days after infarction (28 +/- 2.2 vs. 36 +/- 1.4% in MI; P<0.05). G-CSF pretreatment increased Bcl-2 and Bcl-xL protein expression, but did not alter Bax in LV. Apoptotic nuclei were reduced by treatment (Sham: 0.46 +/- 0.42, MI: 15.5 +/- 2.43, MI-GCSF: 5.34 +/- 3.34%; P<0.05). Fifteen days after MI, cardiac function remained preserved in G-CSF pretreated rats. The LV dilation was reduced in MI-G-CSF group as compared to MI rats, being closely associated with infarct size. Conclusion. The early beneficial effects of G-CSF were essentials to preserve cardiac function at a chronic stage of myocardial infarction. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce`s disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.
Resumo:
OBJECTIVES: This study assessed the bone density gain and its relationship with the periodontal clinical parameters in a case series of a regenerative therapy procedure. MATERIAL AND METHODS: Using a split-mouth study design, 10 pairs of infrabony defects from 15 patients were treated with a pool of bovine bone morphogenetic proteins associated with collagen membrane (test sites) or collagen membrane only (control sites). The periodontal healing was clinically and radiographically monitored for six months. Standardized pre-surgical and 6-month postoperative radiographs were digitized for digital subtraction analysis, which showed relative bone density gain in both groups of 0.034 ± 0.423 and 0.105 ± 0.423 in the test and control group, respectively (p>0.05). RESULTS: As regards the area size of bone density change, the influence of the therapy was detected in 2.5 mm² in the test group and 2 mm² in the control group (p>0.05). Additionally, no correlation was observed between the favorable clinical results and the bone density gain measured by digital subtraction radiography (p>0.05). CONCLUSIONS: The findings of this study suggest that the clinical benefit of the regenerative therapy observed did not come with significant bone density gains. Long-term evaluation may lead to a different conclusions.
Resumo:
PURPOSE: To investigate the facial symmetry of rats submitted to experimental mandibular condyle fracture and with protein undernutrition (8% of protein) by means of cephalometric measurements. METHODS: Forty-five adult Wistar rats were distributed in three groups: fracture group, submitted to condylar fracture with no changes in diet; undernourished fracture group, submitted to hypoproteic diet and condylar fracture; undernourished group, kept until the end of experiment, without condylar fracture. Displaced fractures of the right condyle were induced under general anesthesia. The specimens were submitted to axial radiographic incidence, and cephalometric mensurations were made using a computer system. The values obtained were subjected to statistical analyses among the groups and between the sides in each group. RESULTS: There was significative decrease of the values of serum proteins and albumin in the undernourished fracture group. There was deviation of the median line of the mandible relative to the median line of the maxilla, significative to undernutrition fracture group, as well as asymmetry of the maxilla and mandible, in special in the final period of experiment. CONCLUSION: The mandibular condyle fracture in rats with proteic undernutrition induced an asymmetry of the mandible, also leading to consequences in the maxilla.
Resumo:
The aim of the present work was to characterize changes in the protein profile throughout seed development in O. catharinensis, a recalcitrant species, by two-dimensional gel electrophoresis. Protein extraction was undertaken by using a thiourea/urea buffer, followed by a precipitation step with 10% TCA. Comparative analysis during seed development showed that a large number of proteins were exclusively detected in each developmental stage. The cotyledonary stage, which represents the transition phase between embryogenesis and the beginning of metabolism related to maturation, presents the highest number of stage-specific spots. Protein identification, through MS/MS analysis, resulted in the identification of proteins mainly related to oxidative metabolism and storage synthesis. These findings contribute to a better understanding of protein metabolism during seed development in recalcitrant seeds, besides providing information on established markers that could be useful in defining and improving somatic embryogenesis protocols, besides monitoring the development of somatic embryos in this species.
Resumo:
In this study, we evaluated the expression of the Zenk protein within the nucleus taeniae of the pigeon’s amygdala (TnA) after training in a classical aversive conditioning, in order to improve our understanding of its functional role in birds. Thirty-two 18-month-old adult male pigeons (Columba livia), weighing on average 350 g, were trained under different conditions: with tone-shock associations (experimental group; EG); with shock-alone presentations (shock group; SG); with tone-alone presentations (tone group; TG); with exposure to the training chamber without stimulation (context group; CG), and with daily handling (naive group; NG). The number of immunoreactive nuclei was counted in the whole TnA region and is reported as density of Zenk-positive nuclei. This density of Zenk-positive cells in the TnA was significantly greater for the EG, SG and TG than for the CG and NG (P < 0.05). The data indicate an expression of Zenk in the TnA that was driven by experience, supporting the role of this brain area as a critical element for neural processing of aversive stimuli as well as meaningful novel stimuli.