227 resultados para IFN-gamma mRNA
Resumo:
The NK1.1 molecule participates in NK, NKT, and T-cell activation, contributing to IFN-gamma production and cytotoxicity. To characterize the early immune response to Plasmodium chabaudi AS, spleen NK1.1(+) and NK1.1(-) T cells were compared in acutely infected C57BL/6 mice. The first parasitemia peak in C57BL/6 mice correlated with increase in CD4(+)NK1.1(+)TCR-alpha beta(+), CD8(+)NK1.1(+)TCR-alpha beta(+), and CD4(+)NK1.1(-)TCR-alpha beta(+) cell numbers per spleen, where a higher increment was observed for NK1.1(+) T cells compared to NK1.1(-) T cells. According to the ability to recognize the CD1d-alpha-GalCer tetramer, CD4(+)NK1.1(+) cells in 7-day infected mice were not predominantly invariant NKT cells. At that time, nearly all NK1.1(+) T cells and around 30% of NK1.1(-) T cells showed an experienced/activated (CD44(HI)CD69(HI)CD122(HI)) cell phenotype, with high expression of Fas and PD-L1 correlating with their low proliferative capacity. Moreover, whereas IFN-gamma production by CD4(+)NK1.1(+) cells peaked at day 4 p.i., the IFN-gamma response of CD4(+)NK1.1(-) cells continued to increase at day 5 of infection. We also observed, at day 7 p.i., 2-fold higher percentages of perforin(+) cells in CD8(+)NK1.1(+) cells compared to CD8(+)NK1.1(-) cells. These results indicate that spleen NK1.1(+) and NK1.1(-) T cells respond to acute P. chabaudi malaria with different kinetics in terms of activation, proliferation, and IFN-gamma production.
Resumo:
The Leishmune (R) vaccine has been used in endemic areas to prevent canine visceral leishmaniasis in Brazil, but cytokine production induced by vaccination has rarely been investigated in dogs. This study aimed to evaluate the immune response of dogs vaccinated with Leishmune FML vaccine (Fort Dodge) against total antigen of Leishmania (Leishmania) chagasi (TAg) and FML. Twenty healthy dogs from Aracatuba, Sao Paulo, Brazil, an endemic leishmaniasis area, received three consecutive subcutaneous injection of Leishmune vaccine at 21-day intervals. PBMC were isolated before and 10 days after completing vaccination and lymphoproliferative response and antibody production against FML or total promastigote antigen were tested. Cytokines IFN-gamma, IL-4 and TNF-alpha were measured in culture supernatant and CD4+/CD25+ and CD8+/CD25+ T cell presence was determined. Analysis of the data indicated that the vaccine conferred humoral responses (100%) against both antigens and cellular immunity to FML (85%) and total antigen (80%), the supernatant of cultured cells stimulated with TAg and FML showed an increase in IFN-gamma (P < 0.05), and the vaccine reduced CD4+/CD25+ T cell presence compared to that observed before vaccination. These responses may constitute part of the immune mechanism induced by Leishmune. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
IL-23/IL-17-induced neutrophil recruitment plays a pivotal role in rheumatoid arthritis (RA). However, the mechanism of the neutrophil recruitment is obscure. Here we report that prostaglandin enhances the IL-23/IL-17-induced neutrophil migration in a murine model of RA by inhibiting IL-12 and IFN gamma production. Methylated BSA (mBSA) and IL-23-induced neutrophil migration was inhibited by anti-IL-23 and anti-IL-17 antibodies, COX inhibitors, IL-12, or IFN gamma but was enhanced by prostaglandin E(2) (PGE(2)). IL-23-induced IL-17 production was increased by PGE(2) and suppressed by COX-inhibition or IL-12. Furthermore, COX inhibition failed to reduce IL-23-induced neutrophil migration in IL-12- or IFN gamma-deficient mice. IL-17-induced neutrophil migration was not affected by COX inhibitors, IL-12, or IFN gamma but was inhibited by MK886 (a leukotriene synthesis inhibitor), anti-TNF alpha, anti-CXCL1, and anti-CXCL5 antibodies and by repertaxin (a CXCR1/2 antagonist). These treatments all inhibited mBSA- or IL-23-induced neutrophil migration. IL-17 induced neutrophil chemotaxis through a CXC chemokines-dependent pathway. Our results suggest that prostaglandin plays an important role in IL-23-induced neutrophil migration in arthritis by enhancing IL-17 synthesis and by inhibiting IL-12 and IFN gamma production. We thus provide a mechanism for the pathogenic role of the IL-23/IL-17 axis in RA and also suggest an additional mechanism of action for nonsteroidal anti-inflammatory drugs.
Resumo:
When infected with Trypanosoma cruzi, Beagle dogs develop symptoms similar to those of Chagas disease in human beings, and could be an important experimental model for a better understanding of the immunopathogenic mechanisms involved in chronic chagasic infection. This study evaluates IL-10, IFN-gamma and TNF-alpha production in the sera, culture supernatant, heart and cervical lymph nodes and their correlation with cardiomegaly, cardiac inflammation and fibrosis in Beagle dogs infected with T. cruzi. Pathological analysis showed severe splenomegaly, lymphadenopathy and myocarditis in all infected dogs during the acute phase of the disease, with cardiomegaly, inflammation and fibrosis observed in 83% of the animals infected by T. cruzi during the chronic phase. The data indicate that infected animals producing IL-10 in the heart during the chronic phase and showing high IL-10 production in the culture supernatant and serum during the acute phase had lower cardiac alterations (myocarditis, fibrosis and cardiomegaly) than those with high IFN-gamma and TNF-alpha levels. These animals produced low IL-10 levels in the culture supernatant and serum during the acute phase and did not produce IL-10 in the heart during the chronic phase of the disease. Our findings showed that Beagle dogs are a good model for studying the immunopathogenic mechanism of Chagas disease, since they reproduce the clinical and immunological findings described in chagasic patients. The data suggest that the development of the chronic cardiac form of the disease is related to a strong Th1 response during the acute phase of the disease, while the development of the indeterminate form results from a blend of Th1 and Th2 responses soon after infection, suggesting that the acute phase immune response is important for the genesis of chronic cardiac lesions. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
Background/Aim: Chagas` disease is caused by Trypanosoma cruzi and occurs in most Latin American countries. The protozoan may colonize the central nervous system (CNS) of immune-compromised human hosts, thus causing neuronal disorders. Systemic control of the intracellular forms of the parasite greatly depends on the establishment of a TH1 response and subsequent nitric oxide (NO) release. At the CNS, it is known that low concentrations of NO promote neuronal survival and growth, while high concentrations exert toxic effects and neuron death. Accounting for NO production by astrocytes is the glia-derived factor S100 beta, which is overproduced in some neurodegenerative diseases. In the current work, we studied the expression of NO, interferon (IFN)-gamma and S100 beta in the spinal cord tissue of IL-12p40KO mice infected with T. cruzi, a model of neurodegenerative process. Methods: IL-12p40KO and wild-type (WT) female mice infected with T. cruzi Sylvio X10/4 (10(5) trypomastigotes, intraperitoneally) were euthanized when IL-12p40KO individuals presented limb paralysis. Spinal cord sections were submitted to immunohistochemical procedures for localization of neurofilament, laminin, nitrotyrosine, NO synthases (NOS), IFN-gamma and S100 beta. The total number of neurons was estimated by stereological analysis and the area and intensity of immunoreactivities were assessed by microdensitometric/morphometric image analysis. Results: No lesion was found in the spinal cord sections of WT mice, while morphological disarrangements, many inflammatory foci, enlarged vessels, amastigote nests and dying neurons were seen at various levels of IL-12p40KO spinal cord. Compared to WT mice, IL-12p40KO mice presented a decrement on total number of neurons (46.4%, p<0.05) and showed increased values of immunoreactive area for nitrotyrosine (239%, p<0.01) and NOS (544%, p<0.001). Moreover, the intensity of nitrotyrosine (16%, p<0.01), NOS (38%, p<0.05) and S100 beta (21%, p<0.001) immunoreactivities were also augmented. No IFN-gamma labeled cells were seen in WT spinal cord tissue, contrary to IL-12p40KO tissue that displayed inflammatory infiltrating cells and also some parenchymal cells positively labeled.Conclusion: We suggest that overproduction of NO may account for neuronal death at the spinal cord of T. cruzi-infected IL-12p40KO mice and that IFN-gamma and S100 beta may contribute to NOS activation in the absence of IL-12. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Helminths and their products have a profound immunomodulatory effect upon the inductive and effector phases of inflammatory responses, including allergy. We have demonstrated that PAS-1, a protein isolated from Ascaris strum worms, has an inhibitory effect on lung allergic inflammation due to its ability to down-regulate eosinophilic inflammation, Th2 cytokine release and IgE antibody production. Here, we investigated the role of IL-12, IFN-gamma and IL-10 in the PAS-1-induced inhibitory mechanism using a murine model of asthma. Wild type C57BL/6, IL-12(-/-), IFN-gamma(-/-) and IL-10(-/-) mice were immunized with PAS-1 and/or OVA and challenged with the same antigens intranasally. The suppressive effect of PAS-I was demonstrated on the cellular influx into airways, with reduction of eosinophil number and eosinophil peroxidase activity in OVA + PAS-1-immunized wild type mice. This effect well correlated with a significant reduction in the levels of IL-4, IL-5, IL-13 and eotaxin in BAL fluid. Levels of IgE and IgG1 antibodies were also impaired in serum from these mice. The inhibitory activity of PAS-I was also observed in IL-12(-/-) mice, but not in IFN-gamma(-/-) and IL-10(-/-) animals. These data show that IFN-gamma and IL-10, but not IL-12, play an important role in the PAS-1 modulatory effect. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Monocytes/macrophages and lymphocytes have a key role in the pathogenesis of atherosclerosis through the production of inflammatory and anti-inflammatory cytokines. We evaluated mRNA expression and protein production of CCL2, CXCL8, CXCL9, CXCL10, IFN-gamma and IL-10 in vitro as well as the expression of the CCR2 and CXCR3 receptors in peripheral blood mononuclear cells (PBMCs) of patients with coronary artery disease (CAD) and healthy controls in the presence or absence of oxidized LDL (oxLDL). Patients with CAD showed higher constitutive expression of CCL2, CXCL8, CXCL9, CXCL10 and IFN-gamma mRNA and, after stimulation with oxLDL, higher expression of CCL2 and CXCL8 mRNA than the control group. We also detected higher levels of CCL2 and CXCL8 in supernatants of oxLDL-stimulated PBMCs from CAD patients than in corresponding supernatants from controls. Patients with CAD had a higher percentage of constitutive CCR2(+) and CXCR3(+) cells after stimulation with oxLDL. Among CAD patients, the main differences between the stable (SA) and unstable angina (UA) groups were lower IL-10 mRNA production in the latter group. Altogether, our data suggest that PBMCs from CAD patients are able to produce higher concentrations of chemokines and cytokines involved in the regulation of monocyte and lymphocyte migration and retention in atherosclerotic lesions. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Haemonchus parasites are responsible for many losses in animal production. However, few studies are available, especially of zebu cattle. In this study, we investigated mRNA differences of immune response genes in naive Nellore calves infected with Haemonchus placei, relating these differences to patterns of cellular infiltrate. Calves were infected with 15,000 H. placei 13 larvae and after 7 days lymph node and abomasum tissues were collected. IL-2, IL-4, IL-8, IL-12, IL-13, IFN-gamma, MCP-1, lysozyme, pepsinogen and TNF-alpha genes were evaluated by qPCR. Mast cells, eosinophils and globular leukocytes were counted by abomasum histology. In the infected group, IL-4, IL-13 and TNF-alpha were up-regulated in the abomasal lymph node. In the abomasum, IL-13 increased and TNF-alpha was down-regulated (p < 0.05). No differences were detected for mast cells and eosinophil counts in abomasal tissue (p > 0.05). We conclude that for this infection time, there was Th2 polarization but that cellular infiltrate in abomasal tissue takes longer to develop. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background: Preconception allergen immunization prevents neonatal allergen sensitization in mice by a complex interaction between regulatory cells/factors and antibodies. The present study assessed the influence of maternal immunization with ovalbumin (OVA) on the immune response of 3 day-old and 3 week-old offspring immunized or non-immunized with OVA and evaluated the effect of IgG treatment during fetal development or neonatal period. Results: Maternal immunization with OVA showed increased levels of Fc gamma RIIb expression in splenic B cells of neonates, which were maintained for up to 3 weeks and not affected by additional postnatal OVA immunization. Maternal immunization also exerted a down-modulatory effect on both IL-4 and IFN-gamma-secreting T cells and IL-4 and IL-12-secreting B cells. Furthermore, immunized neonates from immunized mothers showed a marked inhibition of antigen-specifc IgE Ab production and lowered Th2/Th1 cytokine levels, whereas displaying enhanced Fc gamma RIIb expression on B cells. These offspring also showed reduced antigen-specific proliferative response and lowered B cell responsiveness. Moreover, in vitro evaluation revealed an impairment of B cell activation upon engagement of B cell antigen receptor by IgG from OVA-immunized mice. Finally, in vivo IgG transference during pregnancy or breastfeeding revealed that maternal Ab transference was able to increase regulatory cytokines, such as IL-10, in the prenatal stage; yet only the postnatal treatment prevented neonatal sensitization. None of the IgG treatments induced immunological changes in the offspring, as it was observed for those from OVA-immunized mothers. Conclusion: Maternal immunization upregulates the inhibitory Fc gamma RIIb expression on offspring B cells, avoiding skewed Th2 response and development of allergy. These findings contribute to the advancement of prophylactic strategies to prevent allergic diseases in early life.
Resumo:
Conventional vaccines to prevent the pneumonia caused by Rhodococcus equi have not been successful. We have recently demonstrated that immunization with Salmonella enterica Typhimurium expressing the VapA antigen protects mice against R. equi infection. We now report that oral vaccination of mice with this recombinant strain results in high and persistent fecal levels of antigen-specific IgA, and specific proliferation of the spleen cells of immunized mice in response to the in vitro stimulation with R. equi antigen. After in vitro stimulation, spleen cells of immunized mice produce high levels of Th1 cytokines and show a prominent mRNA expression of the Th1 transcription factor T-bet, in detriment of the Th2 transcription factor GATA-3. Following R. equi challenge, a high H(2)O(2), NO, IL-12, and IFN-gamma content is detected in the organs of immunized mice. On the other hand, TNF-alpha and IL-4 levels are markedly lower in the organs of vaccinated mice, compared with the non-vaccinated ones. The IL-10 content and the mRNA transcription level of TGF-beta are also higher in the organs of immunized mice. A greater incidence of CD4(+) and CD8(+) T cells and B lymphocytes is verified in vaccinated mice. However, there is no difference between vaccinated and non-vaccinated mice in terms of the frequency of CD4(+)CD25(+)Foxp3(+) T cells. Finally, we show that the vaccination confers a long-term protection against R. equi infection. Altogether, these data indicate that the oral vaccination of mice with S. enterica Typhimurium expressing VapA induces specific and long-lasting humoral and cellular responses against the pathogen, which are appropriately regulated and allow tissue integrity after challenge.
Resumo:
Background: Cerebral malaria (CM) is a syndrome characterized by neurological signs, seizures and coma. Despite the fact that CM presents similarities with cerebral stroke, few studies have focused on new supportive therapies for the disease. Hyperbaric oxygen (HBO) therapy has been successfully used in patients with numerous brain disorders such as stroke, migraine and atherosclerosis. Methodology/Principal Findings: C57BL/6 mice infected with Plasmodium berghei ANKA (PbA) were exposed to daily doses of HBO (100% O(2), 3.0 ATA, 1-2 h per day) in conditions well-tolerated by humans and animals, before or after parasite establishment. Cumulative survival analyses demonstrated that HBO therapy protected 50% of PbA-infected mice and delayed CM-specific neurological signs when administrated after patent parasitemia. Pressurized oxygen therapy reduced peripheral parasitemia, expression of TNF-alpha, IFN-gamma and IL-10 mRNA levels and percentage of gamma delta and alpha beta CD4(+) and CD8(+) T lymphocytes sequestered in mice brains, thus resulting in a reduction of blood-brain barrier (BBB)dysfunction and hypothermia. Conclusions/Significance: The data presented here is the first indication that HBO treatment could be used as supportive therapy, perhaps in association with neuroprotective drugs, to prevent CM clinical outcomes, including death.
Resumo:
Systemic lupus erythematosus (SLE) is a heterogeneous disease involving several immune cell types and pro-inflammatory signals, including the one triggered by binding of CD40L to the receptor CD40. Peroxisome-proliferator activated receptor gamma (PPAR gamma) is a transcription factor with anti-inflammatory properties. Here we investigated whether CD40 and PPAR gamma could exert opposite effects in the immune response and the possible implications for SLE. Increased PPAR gamma mRNA levels were detected by real-time PCR in patients with active SLE, compared to patients with inactive SLE PPAR gamma/GAPDH mRNA = 2.21 +/- 0.49 vs. 0.57 +/- 0.14, respectively (p < 0.05) or patients with infectious diseases and healthy subjects (p < 0.05). This finding was independent of the corticosteroid therapy. We further explored these observations in human THP1 and in SLE patient-derived macrophages, where activation of CD40 by CD40L promoted augmented PPAR gamma gene transcription compared to non-stimulated cells (PPAR gamma/GAPDH mRNA = 1.14 +/- 0.38 vs. 0.14 +/- 0.01, respectively; p < 0.05). This phenomenon occurred specifically upon CD40 activation, since lipopolysaccharide treatment did not induce a similar response. In addition, increased activity of PPAR gamma was also detected after CD40 activation, since higher PPAR gamma-dependent transcription of CD36 transcription was observed. Furthermore, CD40L-stimulated transcription of CD80 gene was elevated in cells treated with PPAR gamma-specific small interfering RNA (small interfering RNA, siRNA) compared to cells treated with CD40L alone (CD80/GAPDH mRNA = 0.11 +/- 0.04 vs. 0.05 +/- 0.02, respectively; p < 0.05), suggesting a regulatory role for PPAR gamma on the CD40/CD40L pathway. Altogether, our findings outline a novel mechanism through which PPAR gamma regulates the inflammatory signal initiated by activation of CD40, with important implications for the understanding of immunological mechanisms underlying SLE and the development of new treatment strategies. Lupus (2011) 20, 575-587.
Resumo:
Sepsis induces a systemic inflammatory response leading to tissue damage and cell death. LPS tolerance affects inflammatory response. To comprehend potential new mechanisms of immune regulation in endotoxemia, we examined macrophage mRNA expression by macroarray affected by LPS tolerance. LPS tolerance was induced with subcutaneous administration of 1 mg/kg/day of LPS over 5 days. Macrophages were isolated from the spleen and the expression of 1200 genes was quantitatively analyzed by the macroarray technique. The tolerant group displayed relevant changes in the expression of 84 mRNA when compared to naive mice. A functional group of genes related to cell death regulation was identified. PARP-1, caspase 3, FASL and TRAIL genes were confirmed by RT-PCR to present lower expression in tolerant mice. In addition, reduced expression of the pro-inflammatory genes TNF-alpha and IFN-gamma in the tolerant group was demonstrated. Following this, animals were challenged with polymicrobial sepsis. Flow cytometry analysis showed reduced necrosis and apoptosis in macrophages from the tolerant group compared to the naive group. Finally, a survival study showed a significant reduction in mortality in the tolerant group. Thus, in the current study we provide evidence for the selective reprogramming of the gene expression of cell death pathways during LPS tolerance and link these changes to protection from cell death and enhanced survival rates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Leishmania (Viannia) shawl was recently characterized and few studies concerning modifications in cellular and humoral immune responses in experimental leishmaniasis have been conducted. In this work, immunopathological changes induced by L. shawl in chronically infected BALB/c mice were investigated. Infected BALB/c mice developed increased lesion size associated with strong inflammatory infiltrate diffusely distributed in the dermis, with highly infected macrophages. The humoral immune response was predominantly directed toward the IgG1 isotype. The functional activity of CD4(+) and CD8(+) T cells showed significantly increased TNF-alpha mRNA levels associated with reduced IFN-gamma expression by CD4(+) T cells and the double negative (dn) CD4CD8 cell subset. High IL-4 levels expressed by CD8(+) T cells and dnCD4CD8 and TGF-beta by CD4(+) and CD8(+) T cells were detected, while IL-10 was highly expressed by all three cell subpopulations. Taken together, these results show an evident imbalance between TNF-alpha and IFN-gamma that is unfavorable to amastigote replication control. Furthermore, L. shawi seems to regulate different cell populations to express deactivating cytokines to avoid its own destruction. This study indicates BALB/c mice as a potentially good experimental model for further studies on American cutaneous leishmaniosis caused by L. shawi. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Human T-lymphotropic virus type 1 (HTLV-1) is the agent of the HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), which may Occur in > 5% of patients during their lifetime. HTLV-1-infection causes disturbances in the immune system, and the viral load may also play an important role in the pathogenesis of HAM/TSP. Some cytokines are involved in the pathogenesis of this disorder. We have determined IL-2, IL-4, IL-10, IL-12 p70, IFN-gamma and TNF-alpha production among HTLV-1-infected subjects from our HTLV-out Clinic in Institute of Infectious `Emilio Ribas` in Sao Paulo city, Brazil. PBMC obtained from healthy controls (n = 32), asymptomatic HTLV-1 carriers (n = 68) and HAM/TSP patients (n = 44) were grown in the absence and in the presence of phytohaemagglutinin (PHA), and the supernatants` fluids were measured for cytokines production. IL-2 levels were increased in the a-symptomatic HTLV-1 carriers, and IFN-gamma was increased in both groups of patients (asymptomatic HTLV-1 carriers and more significantly among HAM/TSP patients). IL-4, IL-10, TNF-alpha and IL-12 p70 levels were not significantly increased on both groups of patients, as compared with controls. The major finding Of this Study is that IFN-gamma was an important cytokine for the HAM/TSP pathogenesis. Therefore, immune modulation of IFN-gamma may be critical to treat of HAM/TSP patients.