314 resultados para GaN based quantum dots


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilayers of PbTe quantum dots embedded in SiO2 were fabricated by alternate use of Pulsed Laser Deposition (PLD) and Plasma Enhanced Chemical Vapor Deposition (PECVD) techniques. The morphological properties of the nanostructured material were studied by means of High Resolution Transmission Electron Microscopy (HRTEM), Grazing-Incidence Small-Angle X-ray scattering (GISAXS) and X-ray Reflectometry (XRR) techniques. A preliminary analysis of the GISAXS spectra provided information about the multilayer periodicity and its relationship to the size of the deposited PbTe nanoparticles. Finally multilayers were fabricated inside a Fabry-Perot cavity. The device was characterized by means of Scanning Electron Microscopy (SEM). Transmittance measurements show the device functionality in the infrared region. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An x-ray diffraction method, based on the excitation of a surface diffracted wave, is described to investigate the capping process of InAs/GaAs (001) quantum dots (QDs). It is sensitive to the tiny misorientation of (111) planes at the surface of the buffer layer on samples with exposed QDs. After capping, the misorientation occurs in the cap-layer lattice faceting the QDs and its magnitude can be as large as 10 degrees depending on the QDs growth rates, probably due to changes in the size and shape of the QDs. A slow strain release process taking place at room temperature has also been observed by monitoring the misorientation angle of the (111) planes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a comprehensive study of weak-localization and electron-electron interaction effects in a GaAs/InGaAs two-dimensional electron system with nearby InAs quantum dots, using measurements of the electrical conductivity with and without magnetic field. Although both the effects introduce temperature dependent corrections to the zero magnetic field conductivity at low temperatures, the magnetic field dependence of conductivity is dominated by the weak-localization correction. We observed that the electron dephasing scattering rate tau(-1)(phi), obtained from the magnetoconductivity data, is enhanced by introducing quantum dots in the structure, as expected, and obeys a linear dependence on the temperature and elastic mean free path, which is against the Fermi-liquid model. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.2996034]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fundamental interaction for electrons is their hyperfine interaction (HFI) with nuclear spins. HFI is well characterized in free atoms and molecules, and is crucial for purposes from chemical identification of atoms to trapped ion quantum computing. However, electron wave functions near atomic sites, therefore HFI, are often not accurately known in solids. Here we perform an all-electron calculation for conduction electrons in silicon and obtain reliable information on HFI. We verify the outstanding quantum spin coherence in Si, which is critical for fault-tolerant solid state quantum computing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron spin precession about an external magnetic field was studied by Faraday rotation on an inhomogeneous ensemble of singly charged, self-assembled (In,Ga)As/GaAs quantum dots. From the data the dependence of electron g-factor on optical transition energy was derived. A comparison with literature reports shows that the electron g-factors are quite similar for quantum dots with very different geometrical parameters, and their change with transition energy is almost identical. (C) 2011 American Institute of Physics. [doi:10.1063/1.3588413]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a study of dynamic effects detected in the time-resolved emission from quantum dot ensembles. Experimental procedures were developed to search for common behaviors found in quantum dot systems independently of their composition: three quantum dot samples were experimentally characterized. Systems with contrasting interdot coupling are compared and their sensitivity to the excitation energy is analyzed. Our experimental results are compared and contrasted with other results available in literature. The optical recombination time dependence on system parameters is derived and compared to the experimental findings. We discuss the effects of occupation of the ground state in both valence and conduction bands of semiconductor quantum dots in the dynamics of the system relaxation as well as the nonlinear effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method to determine the effects of the geometry and lateral ordering on the electronic properties of an array of one-dimensional self-assembled quantum dots is discussed. A model that takes into account the valence-band anisotropic effective masses and strain effects must be used to describe the behavior of the photoluminescence emission, proposed as a clean tool for the characterization of dot anisotropy and/or inter-dot coupling. Under special growth conditions, such as substrate temperature and Arsenic background, 1D chains of In(0.4)Ga(0.6) As quantum dots were grown by molecular beam epitaxy. Grazing-incidence X-ray diffraction measurements directly evidence the strong strain anisotropy due to the formation of quantum dot chains, probed by polarization-resolved low-temperature photoluminescence. The results are in fair good agreement with the proposed model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several growth procedures for doping InAs/GaAs quantum dots (QDs) with manganese (Mn) have been investigated with cross-sectional scanning tunneling microscopy. It is found that expulsion of Mn out of the QDs and subsequent segregation makes it difficult to incorporate Mn in the QDs even at low growth temperatures of T=320 degrees C and high Mn fluxes. Mn atoms in and around QDs have been observed with strain and potential confinement changing the appearance of the Mn features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recently developed thermal lens spectrometry configuration has been used to study CdSe/ZnS core-shell quantum dots (QDs) suspended in toluene and tetrahydrofuran (THF) solvents. The special features of this configuration make it very attractive to measure fluorescence quantum yield (eta) excitation spectrum since it simplifies the measurement procedure and consequently improve the accuracy. Furthermore, the precision reached is much higher than in conventional photoluminescence (PL) technique. Two methods, called reference sample and multiwavelength have been applied to determine eta, varying excitation wavelength in the UV-visible region (between 335-543 nm). The eta and PL spectra are practically independent of the excitation wavelength. For CdSe/ZnS QDs suspended in toluene we have obtained eta=76 +/- 2%. In addition, the aging effect on eta and PL has been studied over a 200 h period for QDs suspended in THF. (C) 2010 American Institute of Physics. [doi:10.1063/1.3343517]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diluted magnetic semiconductors are promising materials for spintronic applications. Usually one intents to find the ferromagnetic state but recently the antiferromagnetism (AFM) was proposed to have some advantages. In this work, we verify the possibility to obtain spin polarization with an AFM state. In particular, we studied GaN 5% double doped with two different transition metals atoms (Mn and Co or Cr and Ni), forming the Mn(x)Co(0.056-x)Ga(0.944)N and Cr(x)Ni(0.056-x)Ga(0.944)N quaternary alloys. In order to simulate these systems in a more realistic way, and take into account composition fluctuations, we adapted the generalized quasichemical approach to diluted alloys, which is used in combination with spin density-functional theory. We find that is possible to obtain an AFM ground state up to 70% spin polarization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we explore the noise characteristics in lithographically-defined two terminal devices containing self-assembled InAs/InP quantum dots. The experimental ensemble of InAs dots show random telegraph noise (RTN) with tuneable relative amplitude-up to 150%-in well defined temperature and source-drain applied voltage ranges. Our numerical simulation indicates that the RTN signature correlates with a very low number of quantum dots acting as effective charge storage centres in the structure for a given applied voltage. The modulation in relative amplitude variation can thus be associated to the altered electrostatic potential profile around such centres and enhanced carrier scattering provided by a charged dot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution X-ray diffractometry is used to probe the nature of a diffraction-peak broadening previously noticed in quantum dots (QDs) systems with freestanding InAs islands on top of GaAs (001) substrates [Freitas et al., Phys. Status Solidi (A) 204, 2548 (2007)]. The procedure is hence extended to further investigate the capping process of InAs/GaAs QDs. A direct correlation is established between QDs growth rates and misorientation of lattice-planes at the samples surfaces. This effect provides an alternative too] for studying average strain fields on QDs systems in standard triple axis diffractometers running on X-ray tube sources, which are much more common than synchrotron facilities. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetoresistance measurements were performed on an n-type PbTe/PbEuTe quantum well and weak antilocalization effects were observed. This indicates the presence of spin orbit coupling phenomena and we showed that the Rashba effect is the main mechanism responsible for this spin orbit coupling. Using the model developed by Iordanskii et al., we fitted the experimental curves and obtained the inelastic and spin orbit scattering times. Thus we could compare the zero field energy spin-splitting predicted by the Rashba theory with the energy spin-splitting obtained from the analysis of the experimental curves. The final result confirms the theoretical prediction of strong Rashba effect on IV-VI based quantum wells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity sigma(xy) approximate to 0 and in a minimum of diagonal conductivity sigma(xx) at nu = nu(p) - nu(n) = 0, where nu(n) and nu(p) are the electron and hole Landau level filling factors. We suggest that the transport at the CNP point is determined by electron-hole ""snake states'' propagating along the nu = 0 lines. Our observations are qualitatively similar to the quantum Hall effect in graphene as well as to the transport in a random magnetic field with a zero mean value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The persistent current in two vertically coupled quantum rings containing few electrons is studied. We find that the Coulomb interaction between the rings in the absence of tunneling affects the persistent current in each ring and the ground-state configurations. Quantum tunneling between the rings alters significantly the ground state and the persistent current in the system.