62 resultados para Dyson-Schwinger equations
Resumo:
Vertices are of central importance for constructing QCD bound states out of the individual constituents of the theory, i.e. quarks and gluons. In particular, the determination of three-point vertices is crucial in nonperturbative investigations of QCD. We use numerical simulations of lattice gauge theory to obtain results for the 3-point vertices in Landau-gauge SU(2) Yang-Mills theory in three and four space-time dimensions for various kinematic configurations. In all cases considered, the ghost-gluon vertex is found to be essentially tree-level-like, while the three-gluon vertex is suppressed at intermediate momenta. For the smallest physical momenta, reachable only in three dimensions, we find that some of the three-gluon-vertex tensor structures change sign.
Resumo:
We present rigorous upper and lower bounds for the zero-momentum gluon propagator D(0) of Yang-Mills theories in terms of the average value of the gluon field. This allows us to perform a controlled extrapolation of lattice data to infinite volume, showing that the infrared limit of the Landau-gauge gluon propagator in SU(2) gauge theory is finite and nonzero in three and in four space-time dimensions. In the two-dimensional case, we find D(0)=0, in agreement with Maas. We suggest an explanation for these results. We note that our discussion is general, although we apply our analysis only to pure gauge theory in the Landau gauge. Simulations have been performed on the IBM supercomputer at the University of Sao Paulo.
Resumo:
An extension of the uniform invariance principle for ordinary differential equations with finite delay is developed. The uniform invariance principle allows the derivative of the auxiliary scalar function V to be positive in some bounded sets of the state space while the classical invariance principle assumes that. V <= 0. As a consequence, the uniform invariance principle can deal with a larger class of problems. The main difficulty to prove an invariance principle for functional differential equations is the fact that flows are defined on an infinite dimensional space and, in such spaces, bounded solutions may not be precompact. This difficulty is overcome by imposing the vector field taking bounded sets into bounded sets.
Resumo:
In this paper we discuss the existence of mild, strict and classical solutions for a class of abstract integro-differential equations in Banach spaces. Some applications to ordinary and partial integro-differential equations are considered.
Resumo:
In this paper we study the existence of global solutions for a class of abstract functional differential equation with nonlocal conditions. An application is considered.
Resumo:
We study the existence of weighted S-asymptotically omega-periodic mild solutions for a class of abstract fractional differential equations of the form u' = partial derivative (alpha vertical bar 1)Au + f(t, u), 1 < alpha < 2, where A is a linear sectorial operator of negative type.
Resumo:
In this paper we discuss the existence of solutions for a class of abstract partial neutral functional differential equations.
Resumo:
We study the existence of positive solutions of Hamiltonian-type systems of second-order elliptic PDE in the whole space. The systems depend on a small parameter and involve a potential having a global well structure. We use dual variational methods, a mountain-pass type approach and Fourier analysis to prove positive solutions exist for sufficiently small values of the parameter.
Resumo:
A class of semilinear evolution equations of the second order in time of the form u(tt)+Au+mu Au(t)+Au(tt) = f(u) is considered, where -A is the Dirichlet Laplacian, 92 is a smooth bounded domain in R(N) and f is an element of C(1) (R, R). A local well posedness result is proved in the Banach spaces W(0)(1,p)(Omega)xW(0)(1,P)(Omega) when f satisfies appropriate critical growth conditions. In the Hilbert setting, if f satisfies all additional dissipativeness condition, the nonlinear Semigroup of global solutions is shown to possess a gradient-like attractor. Existence and regularity of the global attractor are also investigated following the unified semigroup approach, bootstrapping and the interpolation-extrapolation techniques.
Resumo:
The experimental vertical electron detachment energy (VEDE) of aqueous fluoride, [F(-)(H(2)O)], is approximately 9.8 eV, but spectral assignment is complicated by interference between F(-) 2p and H(2)O 1b(1) orbitals. The electronic structure of [F(-)(H(2)O)] is analyzed with Monte Carlo and ab initio quantum-mechanical calculations. Electron-propagator calculations in the partial third-order approximation yield a VEDE of 9.4 eV. None of the Dyson orbitals corresponding to valence VEDEs consists primarily of F 2p functions. These results and ground-state atomic charges indicate that the final, neutral state is more appropriately described as [F(-)(H(2)O)(+)] than as [F(H(2)O)]. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3431081]
Resumo:
The mapping, exact or approximate, of a many-body problem onto an effective single-body problem is one of the most widely used conceptual and computational tools of physics. Here, we propose and investigate the inverse map of effective approximate single-particle equations onto the corresponding many-particle system. This approach allows us to understand which interacting system a given single-particle approximation is actually describing, and how far this is from the original physical many-body system. We illustrate the resulting reverse engineering process by means of the Kohn-Sham equations of density-functional theory. In this application, our procedure sheds light on the nonlocality of the density-potential mapping of density-functional theory, and on the self-interaction error inherent in approximate density functionals.
Resumo:
In this paper we consider the existence of the maximal and mean square stabilizing solutions for a set of generalized coupled algebraic Riccati equations (GCARE for short) associated to the infinite-horizon stochastic optimal control problem of discrete-time Markov jump with multiplicative noise linear systems. The weighting matrices of the state and control for the quadratic part are allowed to be indefinite. We present a sufficient condition, based only on some positive semi-definite and kernel restrictions on some matrices, under which there exists the maximal solution and a necessary and sufficient condition under which there exists the mean square stabilizing solution fir the GCARE. We also present a solution for the discounted and long run average cost problems when the performance criterion is assumed be composed by a linear combination of an indefinite quadratic part and a linear part in the state and control variables. The paper is concluded with a numerical example for pension fund with regime switching.
Resumo:
Based on physical laws of similarity, an analytic solution of the soil water potential form of the Richards equation was derived for water infiltration into a homogeneous sand. The derivation assumes a similarity between the soil water retention function and that of the soil water content profiles taken at fixed times. The new solution successfully described soil water content profiles experimentally measured for water infiltrating downward, upward, and horizontally into a homogeneous sand and agrees with that presented by Philip in 1957. The utility of this analysis is still to be verified, but it is expected to hold for soils that have a narrow pore-size distribution before wetting and that manifest a sharp increase of water content at the wetting front during infiltration. The effect of van Genuchten`s parameters alpha and n on the application of the solution to other porous media was investigated. The solution also improves and provides a more realistic description of the infiltration process than that pioneered by Green and Ampt in 1911.
Resumo:
We study the existence of asymptotically almost periodic classical solutions for a class of abstract neutral integro-differential equation with unbounded delay. A concrete application to partial neutral integro-differential equations which arise in the study of heat conduction in fading memory material is considered. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A bounded continuous function it u : [0, infinity) -> X is said to be S-asymptotically omega-periodic if lim(t ->infinity)[u(t + omega) - u(t)] = 0. This paper is devoted to study the existence and qualitative properties of S-asymptotically omega-periodic mild solutions for some classes of abstract neutral functional differential equations with infinite delay, Furthermore, applications to partial differential equations are given.