263 resultados para Control agent
Resumo:
The Neotropical lycaenid hairstreak genus Thepytus Robbins and its eight species are revised. Species treatments summarize nomenclature, distribution, habitat, behavior, and diagnostic traits, as well as noting why each species is considered distinct under a biological species concept. An identification key for males and a checklist are included. Beatheclus Balint & Dahners new synonym is synonymized with Thepytus, and Theppus beatrizae (Balint & Dahners) is a new combination. Other nomenclatural actions include the description of Thepytus jennifer Busby & Robbins new species. Thepytus nancyana Busby & Robbins new species, and Thepytus carmen Robbins & Duarte new species. A lectotype is designated or Thecla thyrea Hewitson, 1867, to ensure stability of this name. A phylogenetic analysis based on 22 coded morphological characters yields one equal weight most parsimonious 39-step tree. Implied weighting does not change the tree topology. Unambiguous changes in elevation optimized on the cladogram show that a montane lineage of Thepytus colonized the lowlands in at least one instance. The use of T. echelta (Hewitson) as a biological control agent for Psittacanthus (Loranthaceae) is discussed.
Resumo:
Neoseiulus baraki Athias-Henriot (Acari: Phytoseiidae) has been reported from the Americas, Africa and Asia, often in association with Aceria guerreronis Keifer (Acari: Eriophyidae), one of the most important pests of coconut (Cocos nucifera L.) in diVerent parts of the world. That phytoseiid has been considered one of the most common predators associated with A. guerreronis in Brazil. The objective of this study was to evaluate the feeding preference and the eVect of food items commonly present on coconut fruits and several temperature regimes on the life history of a Brazilian population of N. baraki. Completion of immature development was possible when N. baraki was fed A. guerreronis, Steneotarsonemus concavuscutum Lofego and Gondim Jr., and Tyrophagus putrescentiae (Schrank). Fecundity was highest on T. putrescentiae (39.4 eggs), followed by A. guerreronis (24.8 eggs). In choice tests, irrespective of the food on which N. baraki was reared, a larger number of adults of this predator chose leaf discs containing A. guerreronis than discs containing other food items, demonstrating a preference of the former for the latter as food. Egg to adult thermal developmental time was calculated as 84.2 degree-days, above a threshold of 15.8 degrees C. This lower developmental threshold is higher than previously published for phytoseiid species from higher latitudes. Neoseiulus baraki was shown to have higher biotic potential at 30 degrees C (r(m) 0.29). The results suggest N. baraki to be a promising biological control agent of A. guerreronis, well adapted to survive and develop in areas with relatively high temperatures, where that pest prevails.
Resumo:
Rhodacaridae are cosmopolitan mites mentioned as predators, although nothing is known about their potential as biological control agents. One of the objectives of the work reported in this paper was to evaluate the potential of Protogamasellopsis posnaniensis (Acari: Rhodacaridae) as predator of representative species of insects of the families Sciaridae (Bradysia matogrossensis (Lane)) and Thripidae (Frankliniella occidentalis (Pergande)), of mites of the family Acaridae (Tyrophagus putrescentiae (Schrank) and Rhizoglyphus echinopus (Fumouze & Robin) and of nematodes of the family Rhabditidae (Protorhabditis sp.). Another objective was to determine the biological cycle of P. posnaniensis when fed the prey on which it performed best in the preceding predation test. The study was conducted in a laboratory where the experimental units were maintained at 25 +/- 1 degrees C, 97 +/- 3% RH and in the dark. Although the predator was able to kill all prey species considered in this study, the most favorable prey were T. putrescentiae, F. occidentalis and Protorhabditis sp. Survivorship of the predator in predation tests was always 98% or higher. Life table biological parameters when the predator was fed T. putrescentiae were: R(o) = 109.29; T = 19.06 days; lambda = 1.28 e r(m) = 0.32 female/female/day. Despite preying upon larvae of B. matogrossensis, eggs of the former can also be killed by the latter. The results indicated that A posnaniensis is a promising biological control agent, deserving additional studies on its possible use for the control of soil pests. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
A case-control study was carried out in litters of 1 to 7-day-old piglets to identify the main infectious agents involved with neonatal diarrhea in pigs. Fecal samples (n=276) from piglets were collected on pig farms in the State of Rio Grande do Sul, Brazil, from May to September 2007. Litters with diarrhea were considered cases (n=129) and normal litters (n=147) controls. The samples were examined by latex agglutination test, PAGE, conventional isolating techniques, ELISA, PCR, and microscopic methods in order to detect rotavirus, bacterial pathogens (Escherichia coli, Clostridium perfringens type A and C, and Clostridium difficile), and parasites (Coccidian and Cryptosporidium spp.). Outbreaks of diarrhea were not observed during sampling. At least one agent was detected in fecal samples on 25 out of 28 farms (89.3%) and in 16 farms (57.1%) more than one agent was found. The main agents diagnosed were Coccidia (42.86%) and rotavirus (39.29%). The main agents identified in litters with diarrhea were Clostridium difficile (10.6%), Clostridium perfringens type A (8.8%) and rotavirus (7.5%); in control litters, Clostridium difficile (16.6%) and Coccidian (8.5%). Beta hemolytic Escherichia coli and Clostridium perfringens type C were not detected. When compared with controls, no agent was significantly associated with diarrhea in case litters. These findings stress the need for caution in the interpretation of laboratorial diagnosis of mild diarrhea in neonatal pigs, as the sole detection of an agent does not necessarily indicate that it is the cause of the problem.
Resumo:
Identification of animals that are decomposing or have been run over or burnt and cannot be visually identified is a problem in the surveillance and control of infectious diseases. Many of these animals are wild and represent a valuable source of information for epidemiologic research as they may be carriers of an infectious agent. This article discusses the results obtained using a method for identifying mammals genetically by sequencing their mitochondrial DNA control region. Fourteen species were analyzed and identified. These included the main reservoirs and transmitters of rabies virus, namely, canids, chiroptera and primates. The results prove that this method of genetic identification is both efficient and simple and that it can be used in the surveillance of infectious diseases which includes mammals in their epidemiologic cycle, such as rabies.
Resumo:
Diabetes is a chronic degenerative disease with no cure, is found in millions of people worldwide, and can cause life-threatening complications at any age. The plant Cissus sicyoides L. is a runner plant found abundantly in Brazil, especially in the Amazon. Its therapeutic properties are widely used in popular medicine as a diuretic, anti-influenza, antiinflammatory, anticonvulsion, and hypoglycemic agent. The objective of this study was to analyze the effects of aqueous extracts from the leaves and stem of C. sicyoides L., administered for 60 days, for the control of glycemia in alloxan (monohydrate)-induced diabetic rats, monitored by biomarkers. Data obtained in this study confirmed that C. sicyoides has a hypoglycemic effect on diabetic rats. Administration of its aqueous extracts promoted a 45% decrease in glucose levels after 60 days of administration. Furthermore, indices of hepatic glycogen, blood glucose, C-reactive peptide, and fructosamine were found to be efficient biomarkers to monitor diabetes in rats.
Resumo:
Background: Detailed analysis of the dynamic interactions among biological, environmental, social, and economic factors that favour the spread of certain diseases is extremely useful for designing effective control strategies. Diseases like tuberculosis that kills somebody every 15 seconds in the world, require methods that take into account the disease dynamics to design truly efficient control and surveillance strategies. The usual and well established statistical approaches provide insights into the cause-effect relationships that favour disease transmission but they only estimate risk areas, spatial or temporal trends. Here we introduce a novel approach that allows figuring out the dynamical behaviour of the disease spreading. This information can subsequently be used to validate mathematical models of the dissemination process from which the underlying mechanisms that are responsible for this spreading could be inferred. Methodology/Principal Findings: The method presented here is based on the analysis of the spread of tuberculosis in a Brazilian endemic city during five consecutive years. The detailed analysis of the spatio-temporal correlation of the yearly geo-referenced data, using different characteristic times of the disease evolution, allowed us to trace the temporal path of the aetiological agent, to locate the sources of infection, and to characterize the dynamics of disease spreading. Consequently, the method also allowed for the identification of socio-economic factors that influence the process. Conclusions/Significance: The information obtained can contribute to more effective budget allocation, drug distribution and recruitment of human skilled resources, as well as guiding the design of vaccination programs. We propose that this novel strategy can also be applied to the evaluation of other diseases as well as other social processes.
Resumo:
Witches` broom is a severe disease of Theobroma cacao L. (cacao), caused by the basidiomycete Moniliophthora perniciosa. The use of resistant cultivars is the ultimate method of control, but there are limited sources of resistance. Further, resistance from the most widely used source (`Scavina 6`) has been overcome after a few years of deployment. New sources of resistance have been intensively searched for in the Amazon basin. Here, we evaluated for witches` broom resistance, cacao accessions from various natural cacao populations originally collected in the Brazilian Amazon. Resistance of 43 families was evaluated under nursery and/or field conditions by artificial or natural infection, respectively, based on disease incidence. Screening for resistance by artificial inoculation under nursery conditions appeared to be efficient in identifying these novel resistance sources, confirmed by natural field evaluation over a nine-year period. The increase in natural field infection of `Scavina 6` was clearly demonstrated. Among the evaluated families with the least witches` broom incidence, there were accessions originally collected from distinct river basins, including the Jamari river (`CAB 0371`; `CAB 0388`; `CAB 0392`; and `CAB 0410`); Acre (`CAB 0169`); Javari (`CAB 0352`); Solimes (`CAB 0270`); and from the Purus river basin, the two most outstanding resistant accessions, `CAB 0208` and `CAB 0214`. The large genetic diversity found in cacao populations occurring at river basins from Acre and Amazonas states, Brazil, increased the chance that the selected resistant accessions would be genetically more dissimilar, and represent distinct sources of resistance to M. perniciosa from `Scavina 6`.
Resumo:
The spider mites Tetranychus urticae Koch and Tetranychus evansi Baker and Pritchard are important pests of horticultural crops. They are infected by entomopathogenic fungi naturally or experimentally. Fungal pathogens known to cause high infection in spider mite populations belong to the order Entomophthorales and include Neozygites spp. Studies are being carried out to develop some of these fungi as mycoacaricides, as standalone control measures in an inundative strategy to replace the synthetic acaricides currently in use or as a component of integrated mite management. Although emphasis has been put on inundative releases, entomopathogenic fungi can also be used in classical, conservation and augmentative biological control. Permanent establishment of an exotic agent in a new area of introduction may be possible in the case of spider mites. Conservation biological control can be achieved by identifying strategies to promote any natural enemies already present within crop ecosystems, based on a thorough understanding of their biology, ecology and behaviour. Further research should focus on development of efficient mass production systems, formulation, and delivery systems of fungal pathogens.
Resumo:
Due to the low chemical control effectiveness of citrus black spot, caused by the fungus Guignardia citricarpa at postharvest, and to the search for alternative control methods, this study aimed to evaluate the in vitro effect of volatile organic compounds (VOCs), produced by yeast Saccharomyces cerevisiae, on G. citricarpa. It was observed that the yeast strains evaluated acted as antagonists by VOC production, whose maximum inhibitory capacity was as high as 87.2%. The presence of fermentable carbon sources in the medium was essential for the bioactive VOC production by the yeast. The analysis of VOCs produced in PDA medium by SPME-GC-MS indicated the presence of high quantities of alcohols as well as esters. An artificial VOC mixture prepared on the basis of the composition of the VOCs mimicked the inhibitory effects of the natural VOCs released by S. cerevisiae. Thus, the VOCs produced by the yeast or the artificial mixtures can be a promising control method for citrus black spot or others postharvest diseases.
Resumo:
Pseudocercospora griseola (Sacc.) Crous &. Braun is a widespread fungal phytopathogen that is responsible for angular leaf spot in the common bean (Phaseolus vulgaris L.). A number of fungal phytopathogens have been shown to harbour mycoviruses, and this possibility was investigated in populations of Pseudocercospora griseola. The total nucleic acid extracts of 61 fungal isolates were subjected to agarose gel electrophoresis. Small fragments (800-4800 bp) could be identified in 42 of the samples. The presence of dsRNA in isolate Ig838 was confirmed by treatment of total nucleic acid with DNase, RNase A, and nuclease S I. Transmission electron microscopy revealed the presence of viral-like particles 40 nm in diameter in the mycelia of 2 fungal isolates, namely 29-3 and Ig838. The transmission of dsRNA by means of conidia was 100% for isolate 29-3, but there was loss of 1-6 fragments of dsRNA in monosporic colonies of isolate Ig848. Cycloheximide treatment failed to inhibit the mycovirus in isolate 29-3, but proved efficient in the elimination of the 2.2, 2.0, 1.8, 1.2 and 1.0 kb fragments in 2 colonies of isolate Ig848. The occurrence of a mycovirus in Pseudocercospora griseola was demonstrated for the first time in the present study.
Resumo:
A new solution route for the obtainment of highly pure luminescent rare-earth orthophosphates in hydrothermal conditions was developed. By starting from soluble precursors (lanthanide tripolyphosphato complexes. i.e. with P(3)O(10)(5) as a complexing agent and as in orthophosphate source) and by applying surfactants in a water/toluene medium, the precipitations are confined to reverse micelle structures, thus yielding nanosized and homogeneous orthophosphates The method was employed to obtain lanthanide-activated lanthanum phosphates, which can be applied as red (LaPO(4):Eu(3+)), green (LaPO(4):Ce(3+), Tb(3+)) and blue (LaPO(4):Tm(3+)) phosphors The produced materials were analyzed by powder X-ray diffractometry, scanning electron microscopy, infrared spectroscopy and luminescence spectroscopy (emission, excitation, lifetimes and chromaticity coordinates) (C) 2009 Elsevier B V All rights reserved
Resumo:
This study investigated whether sodium bicarbonate solution, applied on enamel previously exposed to a simulated intrinsic acid, can control dental erosion. Volunteers wore palatal devices containing enamel slabs, which were exposed twice daily extra-orally to hydrochloric acid (0.01 M, pH 2) for 2 min. Immediately afterwards, the palatal devices were re-inserted in the mouth and volunteers rinsed their oral cavity with a sodium bicarbonate solution or deionized water for 60 s. After the washout period, the palatal devices were refilled with a new set of specimens and participants were crossed over to receive the alternate rinse solution. The surface loss and surface microhardness (SMH) of specimens were assessed. The surface loss of eroded enamel rinsed with a sodium bicarbonate solution was significantly lower than the surface loss of eroded enamel rinsed with deionized water. There were no differences between treatments with sodium bicarbonate and deionized water for SMH measurements. Regardless of the solution used as an oral rinse, eroded enamel showed lower SMH than uneroded specimens. Rinsing with a sodium bicarbonate solution after simulated endogenous erosive challenge controlled enamel surface loss but did not alter the microhardness.
Resumo:
Purpose: To evaluate the effect of a 10% carbamide peroxide-containing bleaching agent on brushing abrasion of esthetic restorative materials. Methods: Using a randomized complete block design, 150 specimens (n = 15) measuring 3 x 3 x 2 mm were fabricated into acrylic resin cylinders, using one of the restorative materials: a microfilled resin composite (At), a hybrid resin composite (Ch), a flowable resin composite (Wa), a resin-modified glass-ionomer cement (Fj) and a polyacid-modified resin composite (Dy). The bleaching agent or artificial saliva (control) was applied for 2 hours/day. After that, 120 brushing strokes were simulated automatically and the samples were kept in artificial saliva. Such bleaching/brushing cycle was performed daily for 21 days. Wear depth was assessed using profilometry. Results: Bleaching did not show significant effect on wear depth. There was a significant difference among the restorative materials. Tukey`s test showed that (Al=Ch) < (Wa) < (Fj) and that Dy was only different from Fj. (Am J Dent 2009;22:171-174).
Resumo:
Objective: Using checkerboard DNA-DNA hybridisation (CDDH) assay, this randomised clinical study evaluated the contamination of metallic brackets by four cariogenic bacterial strains (Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei and Lactobacillus acidophilus) and the efficacy of 0.12% chlorhexidine gluconate (CHX) mouthwashes in reducing bacterial contamination. Methods: Thirty-nine 11-33-year-old patients under treatment with fixed orthodontic appliances were enrolled in the study and had 2 new metallic brackets bonded to premolars. Nineteen patients used a 0.12% CHX mouthwash (Periogard (R)) and 20 patients used a placebo mouthwash (control) twice a week. After 30 days, the brackets were removed and samples were obtained for analysis by CDDH. Data were analysed statistically by the Kruskal-Wallis test (alpha = 0.05) using the SAS software. Results: S. mutans, S. sobrinus, L. casei and L. acidophilus were detected in 100% of the samples from both groups. However, brackets of the control group were more heavily contaminated by S. mutans and S. sobrinus (P < 0.01). In the experimental group, although all counts decreased after rinsing with the chlorhexidine solution, there was significant difference only for S. mutans (P = 0.03). Conclusions: The use of 0.12% chlorhexidine gluconate mouthwashes can be useful in clinical practice to reduce the levels of cariogenic microorganisms in patients under treatment with fixed orthodontic appliances. (C) 2011 Elsevier Ltd. All rights reserved.