9 resultados para implementations
em WestminsterResearch - UK
Resumo:
The I/Q mismatches in quadrature radio receivers results in finite and usually insufficient image rejection, degrading the performance greatly. In this paper we present a detailed analysis of the Blind-Source Separation (BSS) based mismatch corrector in terms of its structure, convergence and performance. The results indicate that the mismatch can be effectively compensated during the normal operation as well as in the rapidly changing environments. Since the compensation is carried out before any modulation specific processing, the proposed method works with all standard modulation formats and is amenable to low-power implementations.
Resumo:
In this paper we carry out a detailed performance analysis of a novel blind-source-seperation (BSS) based DSP algorithm that tackles the carrier phase synchronization error problem. The results indicate that the mismatch can be effectively compensated during the normal operation as well as in the rapidly changing environments. Since the compensation is carried out before any modulation specific processing, the proposed method works with all standard modulation formats and lends itself to efficient real-time custom integrated hardware or software implementations.
Resumo:
The Grid Execution Management for Legacy Code Architecture (GEMLCA) enables exposing legacy applications as Grid services without re-engineering the code, or even requiring access to the source files. The integration of current GT3 and GT4 based GEMLCA implementations with the P-GRADE Grid portal allows the creation, execution and visualisation of complex Grid workflows composed of legacy and nonlegacy components. However, the deployment of legacy codes and mapping their execution to Grid resources is currently done manually. This paper outlines how GEMLCA can be extended with automatic service deployment, brokering, and information system support. A conceptual architecture for an Automatic Deployment Service (ADS) and for an x-Service Interoperability Layer (XSILA) are introduced explaining how these mechanisms support desired features in future releases of GEMLCA.
Resumo:
This paper provides an overview of the sources and effects of the RF impairments limiting and rendering the performance of the future wireless communication transceivers costly as well as hindering their wide-spread use in commercial products. As transmission bandwidths and carrier frequencies increase effect of these impairments worsen. This paper studies and presents analytical evaluations of the performance degradation due to the RF impairments in terms of bit-error-rate and image rejection ratio. The paper also give highlights of the various aspects of the research carried out in mitigating the effects of these impairments primarily in the digital signal processing domain at the baseband as well as providing low-complexity hardware implementations of such algorithms incorporating a number of power and area saving techniques.
Resumo:
A retrieval model describes the transformation of a query into a set of documents. The question is: what drives this transformation? For semantic information retrieval type of models this transformation is driven by the content and structure of the semantic models. In this case, Knowledge Organization Systems (KOSs) are the semantic models that encode the meaning employed for monolingual and cross-language retrieval. The focus of this research is the relationship between these meanings’ representations and their role and potential in augmenting existing retrieval models effectiveness. The proposed approach is unique in explicitly interpreting a semantic reference as a pointer to a concept in the semantic model that activates all its linked neighboring concepts. It is in fact the formalization of the information retrieval model and the integration of knowledge resources from the Linguistic Linked Open Data cloud that is distinctive from other approaches. The preprocessing of the semantic model using Formal Concept Analysis enables the extraction of conceptual spaces (formal contexts)that are based on sub-graphs from the original structure of the semantic model. The types of conceptual spaces built in this case are limited by the KOSs structural relations relevant to retrieval: exact match, broader, narrower, and related. They capture the definitional and relational aspects of the concepts in the semantic model. Also, each formal context is assigned an operational role in the flow of processes of the retrieval system enabling a clear path towards the implementations of monolingual and cross-lingual systems. By following this model’s theoretical description in constructing a retrieval system, evaluation results have shown statistically significant results in both monolingual and bilingual settings when no methods for query expansion were used. The test suite was run on the Cross-Language Evaluation Forum Domain Specific 2004-2006 collection with additional extensions to match the specifics of this model.
Resumo:
Science gateways can provide access to distributed computing resources and applications at very different levels of granularity. Some gateways do not even hide the details of the underlying infrastructure, while on the other end some provide completely customized high-level interfaces to end-users. In this chapter the different granularity levels at which science gateways can be developed with WS-PGRADE/gUSE are analysed. The differences between these various granu-larity levels are also illustrated via the example of a molecular docking gateway and its four different implementations.
Resumo:
In this article we provide brief descriptions of three classes of schedulers: Operating Systems Process Schedulers, Cluster Systems, Jobs Schedulers and Big Data Schedulers. We describe their evolution from early adoptions to modern implementations, considering both the use and features of algorithms. In summary, we discuss differences between all presented classes of schedulers and discuss their chronological development. In conclusion, we highlight similarities in the focus of scheduling strategies design, applicable to both local and distributed systems.
Resumo:
This paper investigates the inherent radio frequency analog challenges associated with near field communication systems. Furthermore, the paper presents a digital based sigma-delta modulator for near field communication transmitter implementations. The proposed digital transmitter architecture is designed to best support data intensive applications requiring higher data rates and complex modulation schemes. An NFC transmitter based on a single-bit sigma-delta DAC is introduced, and then the multi-bit extension with necessary simulation results are presented to confirm the suitability of the architecture for near field communication high speed applications.
Resumo:
In this thesis, novel analog-to-digital and digital-to-analog generalized time-interleaved variable bandpass sigma-delta modulators are designed, analysed, evaluated and implemented that are suitable for high performance data conversion for a broad-spectrum of applications. These generalized time-interleaved variable bandpass sigma-delta modulators can perform noise-shaping for any centre frequency from DC to Nyquist. The proposed topologies are well-suited for Butterworth, Chebyshev, inverse-Chebyshev and elliptical filters, where designers have the flexibility of specifying the centre frequency, bandwidth as well as the passband and stopband attenuation parameters. The application of the time-interleaving approach, in combination with these bandpass loop-filters, not only overcomes the limitations that are associated with conventional and mid-band resonator-based bandpass sigma-delta modulators, but also offers an elegant means to increase the conversion bandwidth, thereby relaxing the need to use faster or higher-order sigma-delta modulators. A step-by-step design technique has been developed for the design of time-interleaved variable bandpass sigma-delta modulators. Using this technique, an assortment of lower- and higher-order single- and multi-path generalized A/D variable bandpass sigma-delta modulators were designed, evaluated and compared in terms of their signal-to-noise ratios, hardware complexity, stability, tonality and sensitivity for ideal and non-ideal topologies. Extensive behavioural-level simulations verified that one of the proposed topologies not only used fewer coefficients but also exhibited greater robustness to non-idealties. Furthermore, second-, fourth- and sixth-order single- and multi-path digital variable bandpass digital sigma-delta modulators are designed using this technique. The mathematical modelling and evaluation of tones caused by the finite wordlengths of these digital multi-path sigmadelta modulators, when excited by sinusoidal input signals, are also derived from first principles and verified using simulation and experimental results. The fourth-order digital variable-band sigma-delta modulator topologies are implemented in VHDL and synthesized on Xilinx® SpartanTM-3 Development Kit using fixed-point arithmetic. Circuit outputs were taken via RS232 connection provided on the FPGA board and evaluated using MATLAB routines developed by the author. These routines included the decimation process as well. The experiments undertaken by the author further validated the design methodology presented in the work. In addition, a novel tunable and reconfigurable second-order variable bandpass sigma-delta modulator has been designed and evaluated at the behavioural-level. This topology offers a flexible set of choices for designers and can operate either in single- or dual-mode enabling multi-band implementations on a single digital variable bandpass sigma-delta modulator. This work is also supported by a novel user-friendly design and evaluation tool that has been developed in MATLAB/Simulink that can speed-up the design, evaluation and comparison of analog and digital single-stage and time-interleaved variable bandpass sigma-delta modulators. This tool enables the user to specify the conversion type, topology, loop-filter type, path number and oversampling ratio.