3 resultados para Empirical Bayes method
em WestminsterResearch - UK
Resumo:
The convex hull describes the extent or shape of a set of data and is used ubiquitously in computational geometry. Common algorithms to construct the convex hull on a finite set of n points (x,y) range from O(nlogn) time to O(n) time. However, it is often the case that a heuristic procedure is applied to reduce the original set of n points to a set of s < n points which contains the hull and so accelerates the final hull finding procedure. We present an algorithm to precondition data before building a 2D convex hull with integer coordinates, with three distinct advantages. First, for all practical purposes, it is linear; second, no explicit sorting of data is required and third, the reduced set of s points is constructed such that it forms an ordered set that can be directly pipelined into an O(n) time convex hull algorithm. Under these criteria a fast (or O(n)) pre-conditioner in principle creates a fast convex hull (approximately O(n)) for an arbitrary set of points. The paper empirically evaluates and quantifies the acceleration generated by the method against the most common convex hull algorithms. An extra acceleration of at least four times when compared to previous existing preconditioning methods is found from experiments on a dataset.
Resumo:
The convex hull describes the extent or shape of a set of data and is used ubiquitously in computational geometry. Common algorithms to construct the convex hull on a finite set of n points (x,y) range from O(nlogn) time to O(n) time. However, it is often the case that a heuristic procedure is applied to reduce the original set of n points to a set of s < n points which contains the hull and so accelerates the final hull finding procedure. We present an algorithm to precondition data before building a 2D convex hull with integer coordinates, with three distinct advantages. First, for all practical purposes, it is linear; second, no explicit sorting of data is required and third, the reduced set of s points is constructed such that it forms an ordered set that can be directly pipelined into an O(n) time convex hull algorithm. Under these criteria a fast (or O(n)) pre-conditioner in principle creates a fast convex hull (approximately O(n)) for an arbitrary set of points. The paper empirically evaluates and quantifies the acceleration generated by the method against the most common convex hull algorithms. An extra acceleration of at least four times when compared to previous existing preconditioning methods is found from experiments on a dataset.
Resumo:
This article examines the main assumptions and theoretical underpinnings of case study method in legal studies. It considers the importance of research design, including the crucial roles of the academic literature review, the research question and the use of rival theories to develop hypotheses and the practice of identifying the observable implications of those hypotheses. It considers the selection of data sources and modes of analysis to allow for valid analytical inferences to be drawn in respect of them. In doing so it considers, in brief, the importance of case study selection and variations such as single or multi case approaches. Finally it provides thoughts about the strengths and weaknesses associated with undertaking socio-legal and comparative legal research via a case study method, addressing frequent stumbling blocks encountered by legal researchers, as well as ways to militate them. It is written with those new to the method in mind.