3 resultados para Dried apricot
em WestminsterResearch - UK
Resumo:
Pseudotype viruses (PVs) are chimeric, replication-deficient virions that mimic wild-type virus entry mechanisms and can be safely employed in neutralisation assays, bypassing the need for high biosafety requirements and performing comparably to established serological assays. However, PV supernatant necessitates -80°C long-term storage and cold-chain maintenance during transport, which limits the scope of dissemination and application throughout resource-limited laboratories. We therefore investigated the effects of lyophilisation on influenza, rabies and Marburg PV stability, with a view to developing a pseudotype virus neutralisation assay (PVNA) based kit suitable for affordable global distribution. Infectivity of each PV was calculated after lyophilisation and immediate reconstitution, as well as subsequent to incubation of freeze-dried pellets at varying temperatures, humidities and timepoints. Integrity of glycoprotein structure following treatment was also assessed by employing lyophilised PVs in downstream PVNAs. In the presence of 0.5M sucrose-PBS cryoprotectant, each freeze-dried pseudotype was stably stored for 4 weeks at up to 37°C and could be neutralised to the same potency as unlyophilised PVs when employed in PVNAs. These results confirm the viability of a freeze-dried PVNA-based kit, which could significantly facilitate low-cost serology for a wide portfolio of emerging infectious viruses.
Resumo:
The importance of hand hygiene in reducing the spread of pathogens has been long established and this has been highlighted recently in initiatives such as the NHS’s ‘clean your hands’ campaign. However, much of the focus on hand hygiene has concerned effective hand washing; there has been less emphasis on hand drying and its role in hygienic practices. This study aimed to compare three hand drying methods namely paper towels, a warm air dryer and a jet air dryer for their relative ability to disseminate virus particles into the washroom environment during hand drying. A bacteriophage model was used to compare these methods; hands were artificially contaminated with MS2 phage and dried using each device. Both air sampling and contact plates were assessed and a plaque assay was used to quantify virus dissemination. Samples were collected at set times, heights, angles and distances around each device. Both air sampling and contact plate results indicated that the jet air dryer produced significantly more virus dispersal than either paper towels or the warm air dryer in terms of quantity, distance travelled and the time spent circulating in the air around the device and potentially in the washroom environment.
Resumo:
Aims To use a MS2 bacteriophage model to compare three hand-drying methods, paper towels (PT), a warm air dryer (WAD) and a jet air dryer (JAD), for their potential to disperse viruses and contaminate the immediate environment during use. Methods and Results Participants washed their gloved hands with a suspension of MS2 bacteriophage and hands were dried with one of the three hand-drying devices. The quantity of MS2 present in the areas around each device was determined using a plaque assay. Samples were collected from plates containing the indicator strain, placed at varying heights and distances and also from the air. Over a height range of 0.15-1.65 m, the JAD dispersed an average of >60 and >1300-fold more plaque-forming units (pfu) compared to the WAD and PT (P <0.0001), respectively. The JAD dispersed an average of >20 and >190-fold more pfu in total compared to WAD and PT at all distances tested up to 3 m (P <0.01), respectively. Air samples collected around each device 15 minutes after use indicated that the JAD dispersed an average of >50 and >100-fold more pfu compared to the WAD and PT (P <0.001), respectively. Conclusions Use of the JAD lead to significantly greater and further dispersal of MS2 bacteriophage from artificially contaminated hands when compared to the WAD and PT. Significance and Impact of Study The choice of hand drying device should be considered carefully in areas where infection prevention concerns are paramount, such as healthcare settings and the food industry.