10 resultados para spatial variations in sulfie generation
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
Aim: The European Commission Cooperation in Science and Technology (COST) Action FA1203 “SMARTER” aims to make recommendations for the sustainable management of Ambrosia across Europe and for monitoring its efficiency and cost effectiveness. The goal of the present study is to provide a baseline for spatial and temporal variations in airborne Ambrosia pollen in Europe that can be used for the management and evaluation of this noxious plant . Location: The full range of Ambrosia artemisiifolia L. distribution over Europe (39oN-60oN; 2oW-45oE). Methods: Airborne Ambrosia pollen data for the principal flowering period of Ambrosia (August-September) recorded during a 10-year period (2004-2013) were obtained from 242 monitoring sites. The mean sum of daily average airborne Ambrosia pollen and the number of days that Ambrosia pollen was recorded in the air were analysed. The mean and Standard Deviation (SD) were calculated regardless of the number of years included in the study period, while trends are based on those time series with 8 or more years of data. Trends were considered significant at p < 0.05. Results: There were few significant trends in the magnitude and frequency of atmospheric Ambrosia pollen (only 8% for the mean sum of daily average Ambrosia pollen concentrations and 14% for the mean number of days Ambrosia pollen was recorded in the air). Main conclusions: The direction of any trends varied locally and reflect changes in sources of the pollen, either in size or in distance from the monitoring station. Pollen monitoring is important for providing an early warning of the expansion of this invasive and noxious plant.
Resumo:
Geographical and temporal variations in the start dates of grass pollen seasons are described for selected sites of the European Pollen Information Service. Daily average grass pollen counts are derived from Network sites in Finland, the Netherlands, Denmark, United Kingdom, Austria, Italy and Spain, giving a broad longitudinal transect over Western Europe. The study is part of a larger project that also examines annual and regional variations in the severity, timing of the peak and duration of the grass pollen seasons. For several sites, data are available for over twenty years enabling long term trends to be discerned. The analyses show notable contrasts in the progression of the seasons annually with differing lag times occurring between southern and northern sites in various years depending on the weather conditions. The patterns identified provide some insight into geographical differences and temporal trends in the incidence of pollinosis. The paper discusses the main difficulties involved in this type of analysis and notes possibilities for using data from the European Pollen Information service to construct pan European predictive models for pollen seasons.
Resumo:
This article outlines the research design of a large‐scale, longitudinal research study in England intended to describe and explore variations in teachers' work, lives and their effects on pupils' educational outcomes. The study, funded by the Department for Education and Skills (DfES) and incorporated into the Teaching and Learning Research Programme (TLRP) as an ‘Associate Project’, used an innovative mixed‐methods research design to create case studies of 300 teachers in Years 2, 6 and 9. The research was conducted over three consecutive academic years and collected a wide range of data through interviews, questionnaire surveys of teachers' and pupils' views and assessment data on pupils' attainments in English and mathematics. The text summarises the main findings from the research in relation to four interconnected themes of the study: Professional Life Phases; Professional Identity; Relative Effectiveness; and Resilience and Commitment. The influence of school context, in terms of level of social disadvantage of pupil intake, is also investigated. Key findings and their implications for policy and practice are highlighted.
Resumo:
The VITAE project is a four‐year (2001–2005) research study, commissioned by the Department for Education and Skills, conducted with 300 teachers in 100 schools in seven local education authorities in England. The project aimed to identify factors that may affect their work and lives over time and how these factors may, in turn, impact on their teaching and subsequent pupil progress and outcomes. It combined quantitative and qualitative methods of data collection and analysis in order to define and examine notions of teachers' relational and relative effectiveness. The first part of the paper addresses the nature of effectiveness and three key themes relating to the changing contexts of teachers' work, lives and effectiveness: the challenge of reform to notions of professionalism; professional identities; changes in teachers' work and lives. The research design and early findings and their effects upon the development of the research form the second part. The final part of the paper discusses three sets of understandings which are fundamental to any consideration of teachers' work, lives and effectiveness: relative and relational effectiveness; teacher identities; teachers' life and work contexts. The research suggests that policy‐makers, school leaders and teachers themselves need to attend to these if teacher recruitment, retention and standards are to improve.
Resumo:
France, in particular the Rhône-Alpes region, is one of the three main centres of ragweed (Ambrosia) in Europe. The aim of this study is to develop a gridded ragweed pollen source inventory for all of France that can be used in assessments, eradication plans and by atmospheric models for describing concentrations of airborne ragweed pollen. The inventory combines information about spatial variations in annual Ambrosia pollen counts, knowledge of ragweed ecology, detailed land cover information and a Digital Elevation Model. The ragweed inventory consists of a local infection level on a scale of 0–100% (where 100% is the highest plant abundance per area in the studied region) and a European infection level between 0% and 100% (where 100% relates to the highest identified plant abundance in Europe using the same methodology) that has been distributed onto the EMEP grid with 5 km × 5 km resolution. The results of this analysis showed that some of the highest mean annual ragweed pollen concentrations were recorded at Roussillon in the Rhône-Valley. This is reflected by the inventory, where the European infection level has been estimated to reach 67.70% of the most infected areas in Europe i.e. Kecskemét in central Hungary. The inventory shows that the Rhône Valley is the most heavily infected part of France. Central France is also infected, but northern and western parts of France are much less infected. The inventory can be entered into atmospheric transport models, in combination with other components such as a phenological model and a model for daily pollen release, in order to simulate the dispersion of ragweed pollen within France as well as potential long-distance transport from France to other European countries.
Resumo:
The main aim of this study was to analyse the temporal and spatial variations in grass (Poaceae) pollen counts (2005–2011) recorded in Évora (Portugal), Badajoz (Spain) and Worcester (UK). Weekly average data were examined using nonparametric statistics to compare differences between places. On average, Évora recorded the earliest start dates of the Poaceae pollen seasons and Worcester the latest. The intensity of the Poaceae pollen season varied between sites, with Worcester usually recording the least and Évora the most grass pollen in a season. Mean durations of grass pollen seasons were 77 days in Évora, 78 days in Badajoz and 59 days in Worcester. Overall, longer Poaceae pollen seasons coincided with earlier pollen season start dates. Weekly pollen data, from March to September, from the three pollen-monitoring stations studied were compared. The best fit and most statistically significant correlations were obtained by moving Worcester data backward by 4 weeks (Évora, r = 0.810, p < 0.001) and 5 weeks (Badajoz,r = 0.849, p < 0.001). Weekly data from Worcester therefore followed a similar pattern to that of Badajoz and Évora but at a distance of more than 1,500 km and 4–5 weeks later. The sum of pollen recorded in a season was compared with monthly rainfall between January and May. The strongest positive relationship between season intensity and rainfall was between the annual sum of Poaceae pollen recorded in the season at Badajoz and Évora and total rainfall during January and February. Winter rainfall noticeably affects the intensity of Poaceae pollen seasons in Mediterranean areas, but this was not as important in Worcester.
Resumo:
We explored the temporal and spatial variations in airborne Alternaria spore quantitative and phenological features in Europe using 23 sites with annual time series between 3 and 15 years. The study covers seven countries and four of the main biogeographical regions in Europe. The observations were obtained with Hirst-type spore traps providing time series with daily records. Site locations extend from Spain in the south to Denmark in the north and from England in the West to Poland in the East. The study is therefore the largest assessment ever carried out for Europe concerning Alternaria. Aerobiological data were investigated for temporal and spatial patterns in their start and peak season dates and their spore indices. Moreover, the effects of climate were checked using meteorological data for the same period, using a crop growth model. We found that local climate, vegetation patterns and management of landscape are governing parameters for the overall spore concentration, while the annual variations caused by weather are of secondary importance but should not be neglected. The start of the Alternaria spore season varies by several months in Europe, but the peak of the season is more synchronised in central northern Europe in the middle of the summer, while many southern sites have peak dates either earlier or later than northern Europe. The use of a crop growth model to explain the start and peak of season suggests that such methods could be useful to describe Alternaria seasonality in areas with no available observations.
Resumo:
We present here a simple methodology for calculating species inventories for allergenic pollen that can be used by atmospheric transport models. Ragweed (Ambrosia) species distribution or infection level on the Pannonian Plain has been used as an example of how the methodology can be used. The Pannonian Plain is one of the three main regions in Europe recognized as being polluted by Ambrosia. The methodology relies on spatial variations in annual Ambrosia pollen counts, knowledge on ragweed ecology and detailed land cover information. The results of this analysis showed that some of the highest mean annual ragweed pollen concentrations were witnessed around Kecskemét in central Hungary and Novi Sad in northern Serbia. These areas are also the areas with the highest density of Ambrosia habitats. The resulting inventory can be entered into atmospheric transport models in combination with other components such as a phenological model and a model for daily pollen release, in order to simulate the movement of ragweed pollen from the Pannonian Plain. The methodology is likely to be generally applicable for creating inventories of species distribution of allergenic plants. The main requirement is availability of: detailed land cover information; pollen indexes; a list of the most important habitats; and a region of interest that is mainly influenced by local sources.