8 resultados para game development
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
The Computer Game industry is big business, the demand for graduates is high, indeed there is a continuing shortage of skilled employees. As with most professions, the skill set required is both specific and diverse. There are currently over 30 Higher Education Institutions (HEIs) in the UK offering Computer games related courses. We expect that as the demand from the industry is sustained, more HEIs will respond with the introduction of game-related degrees. This is quite a considerable undertaking involving many issues from integration of new modules or complete courses within the existing curriculum, to staff development. In this paper we share our experiences of introducing elements of game development into our curriculum. This has occurred over the past two years, starting with the inclusion of elements of game development into existing programming modules, followed by the validation of complete modules, and culminating in a complete degree course. Our experience is that our adopting a progressive approach to development, spread over a number of years, was crucial in achieving a successful outcome.
Resumo:
The power of computer game technology is currently being harnessed to produce “serious games”. These “games” are targeted at the education and training marketplace, and employ various key game-engine components such as the graphics and physics engines to produce realistic “digital-world” simulations of the real “physical world”. Many approaches are driven by the technology and often lack a consideration of a firm pedagogical underpinning. The authors believe that an analysis and deployment of both the technological and pedagogical dimensions should occur together, with the pedagogical dimension providing the lead. This chapter explores the relationship between these two dimensions, and explores how “pedagogy may inform the use of technology”, how various learning theories may be mapped onto the use of the affordances of computer game engines. Autonomous and collaborative learning approaches are discussed. The design of a serious game is broken down into spatial and temporal elements. The spatial dimension is related to the theories of knowledge structures, especially “concept maps”. The temporal dimension is related to “experiential learning”, especially the approach of Kolb. The multi-player aspect of serious games is related to theories of “collaborative learning” which is broken down into a discussion of “discourse” versus “dialogue”. Several general guiding principles are explored, such as the use of “metaphor” (including metaphors of space, embodiment, systems thinking, the internet and emergence). The topological design of a serious game is also highlighted. The discussion of pedagogy is related to various serious games we have recently produced and researched, and is presented in the hope of informing the “serious game community”.
Resumo:
Computer game technology provides us with the tools to create web-based educational materials for autonomous and collaborative learning. At Worcester, we have researched the use of this technology in various educational contexts. This paper reports one such study; the use of the commercial game engine “Unreal Tournament 2004” (UT2004) to produce materials suitable for education of Architects. We map the concepts and principles of Architectural Design onto the affordances (development tools) provided by UT2004, leading to a systematic procedure for the realization of buildings and urban environments using this game engine. A theory for the production of web-based learning materials which supports both autonomous and collaborative learning is developed. A heuristic evaluation of our materials, used with second-year students is presented. Associated web-pages provide on-line materials for delegates.
Resumo:
The Sustainable Strategies Game (SSG) is being developed as ‘edutainment’ in response to the need to understand sustainable futures and advocate sustainability within workplaces in Higher Education. SSG seeks to both deliver experiential teaching and learning for business sustainability and enhance students’ learning experiences within Worcester Business School. This paper presents findings from action research undertaken to formally investigate two aspects of SSG within edutainment for ESD: firstly, it explores the value students obtain from game playing as an approach to sustainability learning. Secondly, it establishes students’ suggestions for evolutions to SSG, e.g. game design and additional features such as social media interventions or legal challenges, to increase its value as a tool for teaching and learning. Informal feedback following sessions playing SSG suggests games generally generate positive effects on students’ learning. Students highlighted SSG offered an enjoyable alternative approach to learning and could drive changes to sustainability thinking. Introducing such gameplay offers the potential to engage participants in collaborative behaviours and encourage consideration of profitability through strategies which carry less impact on the environment; vital to create a sustainable future. This paper presents qualitative evidence from game players that can enhance SSG as a tool to further improve students’ learning experience and its value as edutainment rather than entertainment within ESD.
Resumo:
Computer game technology is poised to make a significant impact on the way our youngsters will learn. Our youngsters are ‘Digital Natives’, immersed in digital technologies, especially computer games. They expect to utilize these technologies in learning contexts. This expectation, and our response as educators, may change classroom practice and inform curriculum developments. This chapter approaches these issues ‘head on’. Starting from a review of the current educational issues, an evaluation of educational theory and instructional design principles, a new theoretical approach to the construction of “Educational Immersive Environments” (EIEs) is proposed. Elements of this approach are applied to development of an EIE to support Literacy Education in UK Primary Schools. An evaluation of a trial within a UK Primary School is discussed. Conclusions from both the theoretical development and the evaluation suggest how future teacher-practitioners may embrace both the technology and our approach to develop their own learning resources.
Resumo:
This paper aims to crystallize recent research performed at the University of Worcester to investigate the feasibility of using the commercial game engine ‘Unreal Tournament 2004’ (UT2004) to produce ‘Educational Immersive Environments’ (EIEs) suitable for education and training. Our research has been supported by the UK Higher Education Academy. We discuss both practical and theoretical aspects of EIEs. The practical aspects include the production of EIEs to support high school physics education, the education of architects, and the learning of literacy by primary school children. This research is based on the development of our novel instructional medium, ‘UnrealPowerPoint’. Our fundamental guiding principles are that, first, pedagogy must inform technology, and second, that both teachers and pupils should be empowered to produce educational materials. Our work is informed by current educational theories such as constructivism, experiential learning and socio-cultural approaches as well as elements of instructional design and game principles.
Resumo:
In a world where students are increasing digitally tethered to powerful, ‘always on’ mobile devices, new models of engagement and approaches to teaching and learning are required from educators. Serious Games (SG) have proved to have instructional potential but there is still a lack of methodologies and tools not only for their design but also to support game analysis and assessment. This paper explores the use of SG to increase student engagement and retention. The development phase of the Circuit Warz game is presented to demonstrate how electronic engineering education can be radically reimagined to create immersive, highly engaging learning experiences that are problem-centered and pedagogically sound. The Learning Mechanics–Game Mechanics (LM-GM) framework for SG game analysis is introduced and its practical use in an educational game design scenario is shown as a case study.
Resumo:
At a recent conference on games in education, we made a radical decision to transform our standard presentation of PowerPoint slides and computer game demonstrations into a unified whole, inserting the PowerPoint presentation to the computer game. This opened up various questions relating to learning and teaching theories, which were debated by the conference delegates. In this paper, we reflect on these discussions, we present our initial experiment, and relate this to various theories of learning and teaching. In particular, we consider the applicability of “concept maps” to inform the construction of educational materials, especially their topological, geometrical and pedagogical significance. We supplement this “spatial” dimension with a theory of the dynamic, temporal dimension, grounded in a context of learning processes, such as Kolb’s learning cycle. Finally, we address the multi-player aspects of computer games, and relate this to the theories of social and collaborative learning. This paper attempts to explore various theoretical bases, and so support the development of a new learning and teaching virtual reality approach.