4 resultados para Vehicle Trajectory.
em Worcester Research and Publications - Worcester Research and Publications - UK
Resumo:
The pollen grains of Ambrosia spp. are considered to be important aeroallergens in parts of southern and central Europe. Back-trajectories have been analysed with the aim of finding the likely sources of Ambrosia pollen grains that arrived at Poznań (Poland). Temporal variations in Ambrosia pollen at Poznań from 1995–2005 were examined in order to identify Ambrosia pollen episodes suitable for further investigation using back-trajectory analysis. The trajectories were calculated using the transport model within the Lagrangian air pollution model, ACDEP (Atmospheric Chemistry and Deposition). Analysis identified two separate populations in Ambrosia pollen episodes, those that peaked in the early morning between 4 a.m. and 8 a.m., and those that peaked in the afternoon between 2 p.m. and 6 p.m.. Six Ambrosia pollen episodes between 2001 and 2005 were examined using backtrajectory analysis. The results showed that Ambrosia pollen episodes that peaked in the early morning usually arrived at Poznań from a southerly direction after passing over southern Poland, the Czech Republic, Slovakia and Hungary, whereas air masses that brought Ambrosia pollen to Poznań during the afternoon arrived from a more easterly direction and predominantly stayed within the borders of Poland. Back-trajectory analysis has shown that there is a possibility that long-range transport brings Ambrosia pollen to Poznań from southern Poland, the Czech Republic, Slovakia and Hungary. There is also a likelihood that Ambrosia is present in Poland, as shown by the arrival of pollen during the afternoon that originated primarily from within the country.
Resumo:
Trajectory analysis is a valuable tool that has been used before in aerobiological studies, to investigate the movement of airborne pollen. This study has employed back-trajectories to examine the four highest grass pollen episodes at Worcester, during the 2001 grass pollen season. The results have shown that the highest grass pollen counts of the 2001 season were reached when air masses arrived from a westerly direction. Back-trajectory analysis has a limited value to forecasters because the method is retrospective and cannot be employed directly for forecasting. However, when used in conjunction with meteorological data this technique can be used to examine high magnitude events in order to identify conditions that lead to high pollen counts.
Resumo:
Background: The pollen grains of Ambrosia spp. are considered to be important aeroallergens. Previous studies have shown that the long-range transport of Ambrosia pollen to Poland is intermittent and mainly related to the passage of air masses over the Carpathian and Sudetes mountains from sources to the south, e.g. the Czech Republic, Slovakia and Hungary. In this study, Ambrosia pollen counts and back-trajectories from specific episodes in 1999 and 2002 have been analysed with the aim of identifying possible new sources of Ambrosia pollen arriving at three sites in Poland. Method: The combination of Ambrosia pollen measurements (daily average and bi-hourly concentrations) and air mass trajectory calculations were used to investigate two Ambrosia pollen episodes recorded at Rzeszow, Krakow and Poznań on the 4th and 5th September 1999 and 3rd September 2002. Ambrosia pollen counts were recorded by volumetric spore traps of the Hirst design. Trajectories were calculated using the transport model within the Lagrangian air pollution model, ACDEP (Atmospheric Chemistry and Deposition). Results: The collective results of pollen measurements and back-trajectory analysis indicate plumes of Ambrosia pollen travelling up through Poland from the southeast during the investigated episodes. In 1999, the plume was first recorded at Rzeszow in Southeastern Poland during the morning of the 4th September. Its route can be followed as it passed Krakow during the afternoon of the 4th, and later on the 4th and 5th September at Poznań. Similarly, back-trajectories calculated during the morning and afternoon from Krakow and Rzeszow on the 3rd September 2002 indicates that the air masses arrived at these sites from the East or Southeast. Conclusion: This study shows the progress of Ambrosia plumes into Poland from the southeast. Ambrosia pollen release occurs mainly during the day and so a midday peak in Ambrosia pollen concentrations may indicate a local source. However, if the plume of Ambrosia pollen tracked along its northwesterly path over Poland during investigated episodes did not originate from inside Poland, then it is likely that it came from the Ukraine. This identifies a possible new source of ragweed pollen for Poland. Trajectory analysis can only show the path along which an air mass travels, not the specific source area. Further investigation could therefore include source based transport models such as 3D Eulerian atmospheric transport models.
Resumo:
There are many species among the Alternaria genus, which hosts on economically important crops causing significant yield losses. Less attention has been paid to fungi hosting on plants constituting substantial components of pastures and meadows. Alternaria spp. spores are also recognised as important allergens. A 7-day volumetric spore trap was used to monitor the concentration of airborne fungal spores. Air samples were collected in Worcester, England (2006–2010). Days with a high spore count were then selected. The longest episode that occurred within a five year study was chosen for modelling. Two source maps presenting distribution of crops under rotation and pastures in the UK were produced. Back trajectories were calculated using the HYSPLIT model. In ArcGIS clusters of trajectories were studied in connection with source maps by including the height above ground level and the speed of the air masses. During the episode no evidence for a long distance transport from the continent of Alternaria spp. spores was detected. The overall direction of the air masses fell within the range from South-West to North. The back trajectories indicated that the most important sources of Alternaria spp. spores were located in the West Midlands of England.