2 resultados para Vehicle Trajectory.

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low-thrust guidance problem is defined as the minimum terminal variance (MTV) control of a space vehicle subjected to random perturbations of its trajectory. To accomplish this control task, only bounded thrust level and thrust angle deviations are allowed, and these must be calculated based solely on the information gained from noisy, partial observations of the state. In order to establish the validity of various approximations, the problem is first investigated under the idealized conditions of perfect state information and negligible dynamic errors. To check each approximate model, an algorithm is developed to facilitate the computation of the open loop trajectories for the nonlinear bang-bang system. Using the results of this phase in conjunction with the Ornstein-Uhlenbeck process as a model for the random inputs to the system, the MTV guidance problem is reformulated as a stochastic, bang-bang, optimal control problem. Since a complete analytic solution seems to be unattainable, asymptotic solutions are developed by numerical methods. However, it is shown analytically that a Kalman filter in cascade with an appropriate nonlinear MTV controller is an optimal configuration. The resulting system is simulated using the Monte Carlo technique and is compared to other guidance schemes of current interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect on the scattering amplitude of the existence of a pole in the angular momentum plane near J = 1 in the channel with the quantum numbers of the vacuum is calculated. This is then compared with a fourth order calculation of the scattering of neutral vector mesons from a fermion pair field in the limit of large momentum transfer. The presence of the third double spectral function in the perturbation amplitude complicates the identification of pole trajectory parameters, and the limitations of previous methods of treating this are discussed. A gauge invariant scheme for extracting the contribution of the vacuum trajectory is presented which gives agreement with unitarity predictions, but further calculations must be done to determine the position and slope of the trajectory at s = 0. The residual portion of the amplitude is compared with the Gribov singularity.