3 resultados para Formal feedback

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The University of Worcester states in its most recent strategic plan (2013 – 2018) a set of enduring values that guide and direct the activities of the institution. The first listed, and perhaps the most important value is the striving to be “an outstanding university at which to be a student”. This is further supplemented by values such as “to inspire our students to reach their full potential through excellent, innovative teaching, scholarship and research” (University of Worcester 2013: p.4). One of the many ways in which the institution strives to provide this outstanding educational experience is through regular engagement, both formal and informal, with students at a number of points in each semester. Regular experiences of collating formal and informal feedback has led to the identification of a common theme amongst Higher National Diploma (HND) students in the Institute of Sport and Exercise Sciences (ISES), where they consistently request ‘more practicals’. The ISES modules however are designed to incorporate a high degree of interaction, practical activities and tasks. This is especially important for those studying at HND level as research suggests differences in learning preferences exist when compared to undergraduate students, the former preferring a more tactile style of learning (Peters et al. 2008). Using an introductory Sport Psychology HND module as an example, practical activities and tasks are fully embedded in the taught sessions to enable contextual links to be made between the learning outcomes and their subsequent use. Examples of these include: a. interviewing athletes to produce a performance profile (Butler & Hardy 1992); b. completing psychometric instruments such as the Competitive State Anxiety Inventory-2 (CSAI-2) to measure competitive anxiety in sport (Martens et al. 1990) and demonstrate data collection and construct measurement; c. performing relaxation interventions on the students to demonstrate how specific techniques (in this instance, decreasing somatic anxiety) might work in practice; d. demonstrating how observational learning facilitates skill acquisition by creating experimental conditions that the students participate in, in teaching a new skill. Nevertheless owing to the students' previously stated on-going requests for more practical activities, it became evident that assumptions about what students consider an effective means of experiential or active learning in the context of sport-related disciplines of study needed to be investigated. This is where the opportunity to undertake an action research project arose, this being a practical method commonly employed in pedagogical enquiry to aid reflection on teaching and assessment practice for the purposes of working towards continuous improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have implemented the WRF-Chem model version 3.5 over Poland to quantify the direct and indirect feedback effects of aerosols on simulated meteorology and aerosol concentrations. Observations were compared with results from three simulations at high spatial resolutions of 5 × 5 km: (1) BASE—without any aerosol feedback effects; (2) DIR—with direct aerosol-radiative effects (3) INDIR—with direct and indirect aerosol-radiative effects. We study the overall effect during January 2011 as well as selected episodes of the highest differences in PM10 concentrations between the three simulations. For the DIR simulation, the decrease in monthly mean incoming solar radiation (SWDOWN) appears for the entire study area. It changes geographically, from about −8.0 to −2.0 W m−2, respectively for the southern and northern parts of the country. The highest changes do not correspond to the highest PM10 concentration. Due to the solar radiation changes, the surface mean monthly temperature (T2) decreases for 96 % of the area of Poland, but not more than 1.0 °C. Monthly mean PBLH changes by more than ±5 m for 53 % of the domain. Locally the differences in PBLH between the DIR and BASE are higher than ± 20 m. Due to the direct effect, for 84 % of the domain, the mean monthly PM10 concentrations increase by up to 1.9 µg m−3. For the INDIR simulation the spatial distribution of changes in incoming solar radiation as well as air temperature is similar to the DIR simulation. The decrease of SWDOWN is noticed for the entire domain and for 23 % of the domain is higher than −5.0 W m−2. The absolute differences of PBLH are slightly higher for INDIR than DIR but similarly distributed spatially. For daily episodes, the differences between the simulations are higher, both for meteorology and PM10 concentrations, and the pattern of changes is usually more complex. The results indicate the potential importance of the aerosol feedback effects on modelled meteorology and PM10 concentrations.