3 resultados para virtual media laboratory
em Universidad de Alicante
New Approaches for Teaching Soil and Rock Mechanics Using Information and Communication Technologies
Resumo:
Soil and rock mechanics are disciplines with a strong conceptual and methodological basis. Initially, when engineering students study these subjects, they have to understand new theoretical phenomena, which are explained through mathematical and/or physical laws (e.g. consolidation process, water flow through a porous media). In addition to the study of these phenomena, students have to learn how to carry out estimations of soil and rock parameters in laboratories according to standard tests. Nowadays, information and communication technologies (ICTs) provide a unique opportunity to improve the learning process of students studying the aforementioned subjects. In this paper, we describe our experience of the incorporation of ICTs into the classical teaching-learning process of soil and rock mechanics and explain in detail how we have successfully developed various initiatives which, in summary, are: (a) implementation of an online social networking and microblogging service (using Twitter) for gradually sending key concepts to students throughout the semester (gradual learning); (b) detailed online virtual laboratory tests for a delocalized development of lab practices (self-learning); (c) integration of different complementary learning resources (e.g. videos, free software, technical regulations, etc.) using an open webpage. The complementary use to the classical teaching-learning process of these ICT resources has been highly satisfactory for students, who have positively evaluated this new approach.
Resumo:
Social networking apps, sites and technologies offer a wide range of opportunities for businesses and developers to exploit the vast amount of information and user-generated content produced through social networking. In addition, the notion of second screen TV usage appears more influential than ever, with viewers continuously seeking further information and deeper engagement while watching their favourite movies or TV shows. In this work, the authors present SAM, an innovative platform that combines social media, content syndication and targets second screen usage to enhance media content provisioning, renovate the interaction with end-users and enrich their experience. SAM incorporates modern technologies and novel features in the areas of content management, dynamic social media, social mining, semantic annotation and multi-device representation to facilitate an advanced business environment for broadcasters, content and metadata providers, and editors to better exploit their assets and increase their revenues.
Resumo:
En el campo de la medicina clínica es crucial poder determinar la seguridad y la eficacia de los fármacos actuales y además acelerar el descubrimiento de nuevos compuestos activos. Para ello se llevan a cabo ensayos de laboratorio, que son métodos muy costosos y que requieren mucho tiempo. Sin embargo, la bioinformática puede facilitar enormemente la investigación clínica para los fines mencionados, ya que proporciona la predicción de la toxicidad de los fármacos y su actividad en enfermedades nuevas, así como la evolución de los compuestos activos descubiertos en ensayos clínicos. Esto se puede lograr gracias a la disponibilidad de herramientas de bioinformática y métodos de cribado virtual por ordenador (CV) que permitan probar todas las hipótesis necesarias antes de realizar los ensayos clínicos, tales como el docking estructural, mediante el programa BINDSURF. Sin embargo, la precisión de la mayoría de los métodos de CV se ve muy restringida a causa de las limitaciones presentes en las funciones de afinidad o scoring que describen las interacciones biomoleculares, e incluso hoy en día estas incertidumbres no se conocen completamente. En este trabajo abordamos este problema, proponiendo un nuevo enfoque en el que las redes neuronales se entrenan con información relativa a bases de datos de compuestos conocidos (proteínas diana y fármacos), y se aprovecha después el método para incrementar la precisión de las predicciones de afinidad del método de CV BINDSURF.