3 resultados para titanium silicalite

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive experimental and computational studies have been carried out on the enantioselective titanium(IV)-catalyzed cyanobenzoylation of aldehydes using 1:n Binolam:Ti(OiPr)4 mixtures as precatalysts, with the purpose of identifying the key mechanistic aspects governing enantioselectivity. HCN and isopropyl benzoate were detected in the reacting mixtures. This, as well as the reaction’s response to the presence of an exogenous base, and the failure to react in the presence of Binol:Ti(OiPr)4 mixtures, led us to propose not a direct cyanobenzoylation but an indirect process involving enantioselective hydrocyanation followed by O-benzoylation. Computational work provided positive evidence for the intervention of both indirect and direct cyanobenzoylation routes, the former being faster. However, the standard Curtin–Hammett-based optimization search ended with unsatisfactory results. Experimental and computational DFT studies (B3LYP/6-31G*) led us to conclude that: (1) the overall cyanobenzoylation of aldehydes catalyzed by 1:n Binolam:Ti(OiPr)4 mixtures involves an enantioselective hydrocyanation followed by an stereochemically inert O-benzoylation; (2) the initial complexes prevailing in a 1:1 Binolam:Ti(OiPr)4 mixture are the solvated mononuclear monomer 5·2(iPrOH) and solvated dinuclear dimer 9·2(iPrOH), whereas 9·2(iPrOH) is the major component in a 1:2 or higher 1:n mixture; (3) since the slowest step is that of benzoylation of ligated iPrOH which yields the actual catalysts 5–9, the catalytic system fits into a non-Curtin–Hammett framework, the final products deriving from a kinetic quench of the competing routes; and (4) accordingly, catalysis by 1:1 Binolam:Ti(OiPr)4 mixtures should involve cyanobenzoylations promoted by mononuclear 5, contaminated with those promoted by some dinuclear open dimer 9, whereas cyanobenzoylations catalyzed by a 1:2 and higher 1:n mixtures should be the result of catalysis promoted by the large amounts of dinuclear open dimer 9.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel polymer/TiC nanocomposites “PPA/TiC, poly(PA-co-ANI)/TiC and PANI/TiC” was successfully synthesized by chemical oxidation polymerization at room temperature using p-anisidine and/or aniline monomers and titanium carbide (TiC) in the presence of hydrochloric acid as a dopant with ammonium persulfate as oxidant. These nanocomposites obtained were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and thermogravimetric analysis (TGA). XRD indicated the presence of interactions between polymers and TiC nanoparticle and the TGA revealed that the TiC nanoparticles improve the thermal stability of the polymers. The electrical conductivity of nanocomposites is in the range of 0.079–0.91 S cm−1. The electrochemical behavior of the polymers extracted from the nanocomposites has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerisation on TiC nanoparticles produces electroactive polymers. These nanocomposite microspheres can potentially used in commercial applications as fillers for antistatic and anticorrosion coatings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3D mesoporous TiO2 material with well-developed mesostructure is prepared in the form of a binder-free thin (100 nm) film and studied as potential candidate for the negative electrode in lithium microbatteries. By appropriate thermal treatments, the selected crystal structure (anatase, rutile, or amorphous), and micro-/mesostructure of the materials was obtained. The effects of voltage window and prelithiation treatment improved first cycle reversibility up to 86% and capacity retention of 90% over 100 cycles. After a prolonged intercalation of lithium ions in ordered mesoporous TiO2 appeared small particles assigned to Li2Ti2O4 with cubic structure as observed from ex-situ TEM micrographs. This study highlights the flexibility of the potential window to which the electrode can operate. Maximum capacity values over 100 cycles of 470 μA h cm−2 μm−1 and 177 μA h cm−2 μm−1 are obtained for voltage ranges of 0.1–2.6 V and 1.0–2.6 V, respectively. The observed values are between 6 and 2 times higher than those obtained for films with 600 nm (80 μA h cm−2 μm−1) and 900 nm (92 μA h cm−2 μm−1) lengths. This indicates that 100 nm thin TiO2 films with high accessibility show finite-length type diffusion which is interesting for this particular application.