5 resultados para submerged flat sheet membrane
em Universidad de Alicante
Resumo:
To study the possibility of producing better water quality from municipal wastewater, a membrane bioreactor (MBR) pilot plant with flat sheet (FS) and hollow fiber (HF) membranes coupled with another pilot plant equipped with nanofiltration (NF)/reverse osmosis (RO) membranes were operated to treat municipal wastewater from the wastewater treatment plant (WWTP) Rincón de León, Alicante (Spain). This study was focused on improving the quality of the permeate obtained from the MBR process when complemented by NF or RO stages with respect to salinity, organic matter and nutrients. Furthermore, the removal efficiencies of 10 EMPs were evaluated, comparing the reductions achieved between the wastewater treatment by MBR (adsorption to sludge and biodegradation) and the later treatment using NF or RO (mainly size exclusion). The results showed that the high quality of water was obtained which is appropriate for reuse with salinity removal efficiencies higher than 97%, 96% for total organic carbon (TOC), 91% for nitrates View the MathML sourceNO3- and 99% for total phosphorous (TP). High removal efficiencies were obtained for the majority of the analyzed EMP compounds.
Resumo:
Se ha utilizado una planta de tratamiento a escala laboratorio consiste en un biorreactor de membrana (MBR). Esta planta está compuesta por un reactor biológico de 25 L de capacidad. Se utilizó una membrana plana de micro filtración marca Kubota de polietileno clorado, tamaño de poro 0,1 μm y área de filtración 0.116 m2. Se utilizaron como condiciones de operación: tiempo de residencia hidráulico 3 días, caudal de permeado 0.35 L/h y LMH 3 L/m2h. Se ha podido comprobar que es posible adaptar una población microbiológica a las particulares características químicas del lixiviado procedente de la planta y tratar estos lixiviados en un reactor biológico de membrana sumergida operando en condiciones habituales de sólidos en suspensión en el reactor entre 8-12 g/L durante un periodo de 6 meses. El proceso utilizado permite reducir la materia orgánica (97% DBO5 y 40% DQO) presente en estas corrientes residuales, agotando prácticamente toda la materia biodegradable. Respecto a los contenidos de nutrientes, el tratamiento MBR ensayado permite reducir de 35-40% el nitrógeno total, 45-50% el nitrógeno amoniacal y un 65-70% el fósforo total. Los sólidos en suspensión se han reducido en el efluente tratado en más de un 99%.
Resumo:
This research study deals with the quantification and characterization of the EPS obtained from two 25 L bench scale membrane bioreactors (MBRs) with micro-(MF-MBR) and ultrafiltration (UF-MBR) submerged membranes. Both reactors were fed with synthetic water and operated for 168 days without sludge extraction, increasing their mixed liquor suspended solid (MLSS) concentration during the experimentation time. The characterization of soluble EPS (EPSs) was achieved by the centrifugation of mixed liquor and bound EPS (EPSb) by extraction using a cationic resin exchange (CER). EPS characterization was carried out by applying the 3-dimensional excitation–emission matrix fluorescence spectroscopy (3D-EEM) and high-performance size exclusion chromatography (HPSEC) with the aim of obtaining structural and functional information thereof. With regard to the 3D-EEM analysis, fluorescence spectra of EPSb and EPSs showed 2 peaks in both MBRs at all the MLSS concentrations studied. The peaks obtained for EPSb were associated to soluble microbial by-product-like (predominantly protein-derived compounds) and to aromatic protein. For EPSs, the peaks were associated with humic and fulvic acids. In both MBRs, the fluorescence intensity (FI) of the peaks increased as MLSS and protein concentrations increased. The FI of the EPSs peaks was much lower than for EPSb. It was verified that the evolution of the FI clearly depends on the concentration of protein and humic acids for EPSb and EPSs, respectively. Chromatographic analysis showed that the intensity of the EPSb peak increased while the concentrations of MLSS did. Additionally, the mean MW calculated was always higher the higher the MLSS concentrations in the reactors. MW was higher for the MF-MBR than for the UF-MBR for the same MLSS concentrations demonstrating that the filtration carried out with a UF membrane lead to retentions of lower MW particles.
Resumo:
This research paper deals with the evolution of the extracellular polymeric substances (EPS) produced in the mixed liquor of two 25 L bench-scale membrane bioreactors (MBRs), with micro (MF-MBR) and ultrafiltration (UF-MBR) submerged membranes. The conclusion focuses on the relationship between the operation and how EPS respond, demonstrating that significant changes in EPS concentration were commonly observed when abrupt changes in the operational conditions took place. Bound EPS (EPSb) showed moderate positive statistical correlations with sludge age and MLSS for the two MBRs. Soluble EPS (EPSs), on the other hand, showed a moderate negative statistical correlation between EPSs with the two parameters analyzed for MF-MBR and no correlation with the UF-MBR was found. With respect to the composition of EPS, EPSb were mostly made up of proteins (44–46%) whereas in EPSs, the three components (proteins, carbohydrates, and humic substances) appeared in approximately the same proportion. The statistical analysis exhibited strong positive correlations between EPSb and their constituents, however for EPSs, the correlation was strong only with carbohydrates and moderate with humic substances.
Resumo:
In this study, the filtration process and the biomass characteristics in a laboratory-scale submerged membrane bioreactor (MBR) equipped with a hollow fiber (HF) microfiltration membrane were studied at different solid retention times (SRT). The MBR was fed by synthetic wastewater and the organic loading rate (OLR) was 0.5, 0.2, 0.1, and 0.08 kg COD kg VSS−1 d−1 for 10, 30, 60, and 90 days of SRT, respectively. The hydraulic retention time was 8.4 h and the permeate flux was 6 L m−2 h−1(LMH). Data analysis confirmed that at all the studied SRTs, the HF-MBR operated very good obtaining of high quality permeates. Chemical Oxygen Demand (COD) removal efficiencies were higher than 95%. The best filtration performance was reached at SRT of 30 d. On the other hand, the respirometric analysis showed that biomass was more active and there was more biomass production at low SRTs. The concentration of soluble extracellular polymeric substances (EPS) decreased with increasing SRT. A decrease of soluble EPS caused a decrease of membrane fouling rate, decreasing the frequency of chemical cleanings. The floc size decreased with SRT increasing. At high SRTs, there was more friction among particles due to the increase of the cellular density and the flocs broke decreasing their size.