4 resultados para semilinear parabolic equations
em Universidad de Alicante
Resumo:
Over the past decade, the numerical modeling of the magnetic field evolution in astrophysical scenarios has become an increasingly important field. In the crystallized crust of neutron stars the evolution of the magnetic field is governed by the Hall induction equation. In this equation the relative contribution of the two terms (Hall term and Ohmic dissipation) varies depending on the local conditions of temperature and magnetic field strength. This results in the transition from the purely parabolic character of the equations to the hyperbolic regime as the magnetic Reynolds number increases, which presents severe numerical problems. Up to now, most attempts to study this problem were based on spectral methods, but they failed in representing the transition to large magnetic Reynolds numbers. We present a new code based on upwind finite differences techniques that can handle situations with arbitrary low magnetic diffusivity and it is suitable for studying the formation of sharp current sheets during the evolution. The code is thoroughly tested in different limits and used to illustrate the evolution of the crustal magnetic field in a neutron star in some representative cases. Our code, coupled to cooling codes, can be used to perform long-term simulations of the magneto-thermal evolution of neutron stars.
Resumo:
The modeling of complex dynamic systems depends on the solution of a differential equations system. Some problems appear because we do not know the mathematical expressions of the said equations. Enough numerical data of the system variables are known. The authors, think that it is very important to establish a code between the different languages to let them codify and decodify information. Coding permits us to reduce the study of some objects to others. Mathematical expressions are used to model certain variables of the system are complex, so it is convenient to define an alphabet code determining the correspondence between these equations and words in the alphabet. In this paper the authors begin with the introduction to the coding and decoding of complex structural systems modeling.
Resumo:
In an open system, each disequilibrium causes a force. Each force causes a flow process, these being represented by a flow variable formally written as an equation called flow equation, and if each flow tends to equilibrate the system, these equations mathematically represent the tendency to that equilibrium. In this paper, the authors, based on the concepts of forces and conjugated fluxes and dissipation function developed by Onsager and Prigogine, they expose the following hypothesis: Is replaced in Prigogine’s Theorem the flow by its equation or by a flow orbital considering conjugate force as a gradient. This allows to obtain a dissipation function for each flow equation and a function of orbital dissipation.
Resumo:
In this paper, it is showed that, given an integer number n ≥ 2, each zero of an exponential polynomial of the form w1az1+w2az2+⋯+wnazn, with non-null complex numbers w 1,w 2,…,w n and a 1,a 2,…,a n , produces analytic solutions of the functional equation w 1 f(a 1 z) + w 2 f(a 2 z) + ... + w n f(a n z) = 0 on certain domains of C, which represents an extension of some existing results in the literature on this functional equation for the case of positive coefficients a j and w j.