11 resultados para self-organizing maps of Kohonen

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research described in this thesis was motivated by the need of a robust model capable of representing 3D data obtained with 3D sensors, which are inherently noisy. In addition, time constraints have to be considered as these sensors are capable of providing a 3D data stream in real time. This thesis proposed the use of Self-Organizing Maps (SOMs) as a 3D representation model. In particular, we proposed the use of the Growing Neural Gas (GNG) network, which has been successfully used for clustering, pattern recognition and topology representation of multi-dimensional data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models, without considering time constraints. It is proposed a hardware implementation leveraging the computing power of modern GPUs, which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). The proposed methods were applied to different problem and applications in the area of computer vision such as the recognition and localization of objects, visual surveillance or 3D reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feature selection is an important and active issue in clustering and classification problems. By choosing an adequate feature subset, a dataset dimensionality reduction is allowed, thus contributing to decreasing the classification computational complexity, and to improving the classifier performance by avoiding redundant or irrelevant features. Although feature selection can be formally defined as an optimisation problem with only one objective, that is, the classification accuracy obtained by using the selected feature subset, in recent years, some multi-objective approaches to this problem have been proposed. These either select features that not only improve the classification accuracy, but also the generalisation capability in case of supervised classifiers, or counterbalance the bias toward lower or higher numbers of features that present some methods used to validate the clustering/classification in case of unsupervised classifiers. The main contribution of this paper is a multi-objective approach for feature selection and its application to an unsupervised clustering procedure based on Growing Hierarchical Self-Organising Maps (GHSOMs) that includes a new method for unit labelling and efficient determination of the winning unit. In the network anomaly detection problem here considered, this multi-objective approach makes it possible not only to differentiate between normal and anomalous traffic but also among different anomalies. The efficiency of our proposals has been evaluated by using the well-known DARPA/NSL-KDD datasets that contain extracted features and labelled attacks from around 2 million connections. The selected feature sets computed in our experiments provide detection rates up to 99.8% with normal traffic and up to 99.6% with anomalous traffic, as well as accuracy values up to 99.12%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many classification problems, it is necessary to consider the specific location of an n-dimensional space from which features have been calculated. For example, considering the location of features extracted from specific areas of a two-dimensional space, as an image, could improve the understanding of a scene for a video surveillance system. In the same way, the same features extracted from different locations could mean different actions for a 3D HCI system. In this paper, we present a self-organizing feature map able to preserve the topology of locations of an n-dimensional space in which the vector of features have been extracted. The main contribution is to implicitly preserving the topology of the original space because considering the locations of the extracted features and their topology could ease the solution to certain problems. Specifically, the paper proposes the n-dimensional constrained self-organizing map preserving the input topology (nD-SOM-PINT). Features in adjacent areas of the n-dimensional space, used to extract the feature vectors, are explicitly in adjacent areas of the nD-SOM-PINT constraining the neural network structure and learning. As a study case, the neural network has been instantiate to represent and classify features as trajectories extracted from a sequence of images into a high level of semantic understanding. Experiments have been thoroughly carried out using the CAVIAR datasets (Corridor, Frontal and Inria) taken into account the global behaviour of an individual in order to validate the ability to preserve the topology of the two-dimensional space to obtain high-performance classification for trajectory classification in contrast of non-considering the location of features. Moreover, a brief example has been included to focus on validate the nD-SOM-PINT proposal in other domain than the individual trajectory. Results confirm the high accuracy of the nD-SOM-PINT outperforming previous methods aimed to classify the same datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growing models have been widely used for clustering or topology learning. Traditionally these models work on stationary environments, grow incrementally and adapt their nodes to a given distribution based on global parameters. In this paper, we present an enhanced unsupervised self-organising network for the modelling of visual objects. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, several researchers have shown the good performance of alkali activated slag cement and concretes. Besides their good mechanical properties and durability, this type of cement is a good alternative to Portland cements if sustainability is considered. Moreover, multifunctional cement composites have been developed in the last decades for their functional applications (self-sensing, EMI shielding, self-heating, etc.). In this study, the strain and damage sensing possible application of carbon fiber reinforced alkali activated slag pastes has been evaluated. Cement pastes with 0, 0.29 and 0.58 vol % carbon fiber addition were prepared. Both carbon fiber dosages showed sensing properties. For strain sensing, function gage factors of up to 661 were calculated for compressive cycles. Furthermore, all composites with carbon fibers suffered a sudden increase in their resistivity when internal damages began, prior to any external signal of damage. Hence, this material may be suitable as strain or damage sensor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The viability of carbon nanofiber (CNF) composites in cement matrices as a self-heating material is reported in this paper. This functional application would allow the use of CNF cement composites as a heating element in buildings, or for deicing pavements of civil engineering transport infrastructures, such as highways or airport runways. Cement pastes with the addition of different CNF dosages (from 0 to 5% by cement mass) have been prepared. Afterwards, tests were run at different fixed voltages (50, 100 and 150V), and the temperature of the specimens was registered. Also the possibility of using a casting method like shotcrete, instead of just pouring the fresh mix into the mild (with no system’s efficiency loss expected) was studied. Temperatures up to 138 °C were registered during shotcrete-5% CNF cement paste tests (showing initial 10 °C/min heating rates). However a minimum voltage was required in order to achieve a proper system functioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a modified version of the elastic bunch graph matching (EBGM) algorithm for face recognition is introduced. First, faces are detected by using a fuzzy skin detector based on the RGB color space. Then, the fiducial points for the facial graph are extracted automatically by adjusting a grid of points to the result of an edge detector. After that, the position of the nodes, their relation with their neighbors and their Gabor jets are calculated in order to obtain the feature vector defining each face. A self-organizing map (SOM) framework is shown afterwards. Thus, the calculation of the winning neuron and the recognition process are performed by using a similarity function that takes into account both the geometric and texture information of the facial graph. The set of experiments carried out for our SOM-EBGM method shows the accuracy of our proposal when compared with other state-of the-art methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a neural network model to simplify and 2D meshes. This model is based on the Growing Neural Gas model and is able to simplify any mesh with different topologies and sizes. A triangulation process is included with the objective to reconstruct the mesh. This model is applied to some problems related to urban networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Growing Neural Gas model is used widely in artificial neural networks. However, its application is limited in some contexts by the proliferation of nodes in dense areas of the input space. In this study, we introduce some modifications to address this problem by imposing three restrictions on the insertion of new nodes. Each restriction aims to maintain the homogeneous values of selected criteria. One criterion is related to the square error of classification and an alternative approach is proposed for avoiding additional computational costs. Three parameters are added that allow the regulation of the restriction criteria. The resulting algorithm allows models to be obtained that suit specific needs by specifying meaningful parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comunicación presentada en el 2nd International Workshop on Pattern Recognition in Information Systems, Alicante, April, 2002.