3 resultados para pyrene fluorescence spectroscopy

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A combined chemometrics-metabolomics approach [excitation–emission matrix (EEM) fluorescence spectroscopy, nuclear magnetic resonance (NMR) and high performance liquid chromatography–mass spectrometry (HPLC–MS)] was used to analyse the rhizodeposition of the tritrophic system: tomato, the plant-parasitic nematode Meloidogyne javanica and the nematode-egg parasitic fungus Pochonia chlamydosporia. Exudates from M. javanica roots were sampled at root penetration (early) and gall development (late). EMM indicated that late root exudates from M. javanica treatments contained more aromatic amino acid compounds than the rest (control, P. chlamydosporia or P. chlamydosporia and M. javanica). 1H NMR showed that organic acids (acetate, lactate, malate, succinate and formic acid) and one unassigned aromatic compound (peak no. 22) were the most relevant metabolites in root exudates. Robust principal component analysis (PCA) grouped early exudates for nematode (PC1) or fungus presence (PC3). PCA found (PC1, 73.31 %) increased acetate and reduced lactate and an unassigned peak no. 22 characteristic of M. javanica root exudates resulting from nematode invasion and feeding. An increase of peak no. 22 (PC3, 4.82 %) characteristic of P. chlamydosporia exudates could be a plant “primer” defence. In late ones in PC3 (8.73 %) the presence of the nematode grouped the samples. HPLC–MS determined rhizosphere fingerprints of 16 (early) and 25 (late exudates) m/z signals, respectively. Late signals were exclusive from M. javanica exudates confirming EEM and 1H NMR results. A 235 m/z signal reduced in M. javanica root exudates (early and late) could be a repressed plant defense. This metabolomic approach and other rhizosphere -omics studies could help to improve plant growth and reduce nematode damage sustainably.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research study deals with the quantification and characterization of the EPS obtained from two 25 L bench scale membrane bioreactors (MBRs) with micro-(MF-MBR) and ultrafiltration (UF-MBR) submerged membranes. Both reactors were fed with synthetic water and operated for 168 days without sludge extraction, increasing their mixed liquor suspended solid (MLSS) concentration during the experimentation time. The characterization of soluble EPS (EPSs) was achieved by the centrifugation of mixed liquor and bound EPS (EPSb) by extraction using a cationic resin exchange (CER). EPS characterization was carried out by applying the 3-dimensional excitation–emission matrix fluorescence spectroscopy (3D-EEM) and high-performance size exclusion chromatography (HPSEC) with the aim of obtaining structural and functional information thereof. With regard to the 3D-EEM analysis, fluorescence spectra of EPSb and EPSs showed 2 peaks in both MBRs at all the MLSS concentrations studied. The peaks obtained for EPSb were associated to soluble microbial by-product-like (predominantly protein-derived compounds) and to aromatic protein. For EPSs, the peaks were associated with humic and fulvic acids. In both MBRs, the fluorescence intensity (FI) of the peaks increased as MLSS and protein concentrations increased. The FI of the EPSs peaks was much lower than for EPSb. It was verified that the evolution of the FI clearly depends on the concentration of protein and humic acids for EPSb and EPSs, respectively. Chromatographic analysis showed that the intensity of the EPSb peak increased while the concentrations of MLSS did. Additionally, the mean MW calculated was always higher the higher the MLSS concentrations in the reactors. MW was higher for the MF-MBR than for the UF-MBR for the same MLSS concentrations demonstrating that the filtration carried out with a UF membrane lead to retentions of lower MW particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. 4U 1538−52, an absorbed high mass X-ray binary with an orbital period of ~3.73 days, shows moderate orbital intensity modulations with a low level of counts during the eclipse. Several models have been proposed to explain the accretion at different orbital phases by a spherically symmetric stellar wind from the companion. Aims. The aim of this work is to study both the light curve and orbital phase spectroscopy of this source in the long term. In particular, we study the folded light curve and the changes in the spectral parameters with orbital phase to analyse the stellar wind of QV Nor, the mass donor of this binary system. Methods. We used all the observations made from the Gas Slit Camera on board MAXI of 4U 1538−52 covering many orbits continuously. We obtained the good interval times for all orbital phase ranges, which were the input for extracting our data. We estimated the orbital period of the system and then folded the light curves, and we fitted the X-ray spectra with the same model for every orbital phase spectrum. We also extracted the averaged spectrum of all the MAXI data available. Results. The MAXI spectra in the 2–20 keV energy range were fitted with an absorbed Comptonisation of cool photons on hot electrons. We found a strong orbital dependence of the absorption column density but neither the fluorescence iron emission line nor low energy excess were needed to fit the MAXI spectra. The variation in the spectral parameters over the binary orbit were used to examine the mode of accretion onto the neutron star in 4U 1538−52. We deduce a best value of Ṁ/v∞ = 0.65 × 10-9M⊙ yr-1/ (km s-1) for QV Nor.