2 resultados para polystyrene films

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous, electrically insulating SiO2 layers containing polystyrene sulfonate (PSS) were deposited on glassy carbon electrodes by an electrochemically assisted deposition method. The obtained material was characterized by microscopic, spectroscopic and thermal techniques. Silica-PSS films modify the electrochemical response of the glassy carbon electrodes against selected redox probes. Positively charged species show reduced diffusivities across the SiO2-PSS pores, which resulted in a concentration ratio higher than 1 for these species. The opposite behaviour was found for negatively charged redox probes. These observations can be interpreted in terms of the different affinity of the GC/SiO2-PSS-modified electrode for the electroactive species, as a consequence of the negatively charged porous silica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solution-processed polymer films are used in multiple technological applications. The presence of residual solvent in the film, as a consequence of the preparation method, affects the material properties, so films are typically subjected to post-deposition thermal annealing treatments aiming at its elimination. Monitoring the amount of solvent eliminated as a function of the annealing parameters is important to design a proper treatment to ensure complete solvent elimination, crucial to obtain reproducible and stable material properties and therefore, device performance. Here we demonstrate, for the first time to our knowledge, the use of an organic distributed feedback (DFB) laser to monitor with high precision the amount of solvent extracted from a spin-coated polymer film as a function of the thermal annealing time. The polymer film of interest, polystyrene in the present work, is doped with a small amount of a laser dye as to constitute the active layer of the laser device and deposited over a reusable DFB resonator. It is shown that solvent elimination translates into shifts in the DFB laser wavelength, as a consequence of changes in film thickness and refractive index. The proposed method is expected to be applicable to other types of annealing treatments, polymer-solvent combinations or film deposition methods, thus constituting a valuable tool to accurately control the quality and reproducibility of solution-processed polymer thin films.