9 resultados para multiple objective programming

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear vector semi-infinite optimization deals with the simultaneous minimization of finitely many linear scalar functions subject to infinitely many linear constraints. This paper provides characterizations of the weakly efficient, efficient, properly efficient and strongly efficient points in terms of cones involving the data and Karush–Kuhn–Tucker conditions. The latter characterizations rely on different local and global constraint qualifications. The global constraint qualifications are illustrated on a collection of selected applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a duality theory for semi-infinite linear programming problems under uncertainty in the constraint functions, the objective function, or both, within the framework of robust optimization. We present robust duality by establishing strong duality between the robust counterpart of an uncertain semi-infinite linear program and the optimistic counterpart of its uncertain Lagrangian dual. We show that robust duality holds whenever a robust moment cone is closed and convex. We then establish that the closed-convex robust moment cone condition in the case of constraint-wise uncertainty is in fact necessary and sufficient for robust duality. In other words, the robust moment cone is closed and convex if and only if robust duality holds for every linear objective function of the program. In the case of uncertain problems with affinely parameterized data uncertainty, we establish that robust duality is easily satisfied under a Slater type constraint qualification. Consequently, we derive robust forms of the Farkas lemma for systems of uncertain semi-infinite linear inequalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we analyze the effect of demand uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear program (MILP) with the unique feature of incorporating explicitly the demand uncertainty using scenarios with given probability of occurrence. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we examine multi-objective linear programming problems in the face of data uncertainty both in the objective function and the constraints. First, we derive a formula for the radius of robust feasibility guaranteeing constraint feasibility for all possible scenarios within a specified uncertainty set under affine data parametrization. We then present numerically tractable optimality conditions for minmax robust weakly efficient solutions, i.e., the weakly efficient solutions of the robust counterpart. We also consider highly robust weakly efficient solutions, i.e., robust feasible solutions which are weakly efficient for any possible instance of the objective matrix within a specified uncertainty set, providing lower bounds for the radius of highly robust efficiency guaranteeing the existence of this type of solutions under affine and rank-1 objective data uncertainty. Finally, we provide numerically tractable optimality conditions for highly robust weakly efficient solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Remez penalty and smoothing algorithm (RPSALG) is a unified framework for penalty and smoothing methods for solving min-max convex semi-infinite programing problems, whose convergence was analyzed in a previous paper of three of the authors. In this paper we consider a partial implementation of RPSALG for solving ordinary convex semi-infinite programming problems. Each iteration of RPSALG involves two types of auxiliary optimization problems: the first one consists of obtaining an approximate solution of some discretized convex problem, while the second one requires to solve a non-convex optimization problem involving the parametric constraints as objective function with the parameter as variable. In this paper we tackle the latter problem with a variant of the cutting angle method called ECAM, a global optimization procedure for solving Lipschitz programming problems. We implement different variants of RPSALG which are compared with the unique publicly available SIP solver, NSIPS, on a battery of test problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are many models in the literature that have been proposed in the last decades aimed at assessing the reliability, availability and maintainability (RAM) of safety equipment, many of them with a focus on their use to assess the risk level of a technological system or to search for appropriate design and/or surveillance and maintenance policies in order to assure that an optimum level of RAM of safety systems is kept during all the plant operational life. This paper proposes a new approach for RAM modelling that accounts for equipment ageing and maintenance and testing effectiveness of equipment consisting of multiple items in an integrated manner. This model is then used to perform the simultaneous optimization of testing and maintenance for ageing equipment consisting of multiple items. An example of application is provided, which considers a simplified High Pressure Injection System (HPIS) of a typical Power Water Reactor (PWR). Basically, this system consists of motor driven pumps (MDP) and motor operated valves (MOV), where both types of components consists of two items each. These components present different failure and cause modes and behaviours, and they also undertake complex test and maintenance activities depending on the item involved. The results of the example of application demonstrate that the optimization algorithm provide the best solutions when the optimization problem is formulated and solved considering full flexibility in the implementation of testing and maintenance activities taking part of such an integrated RAM model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

These are the instructions for a programming assignment of the subject Programming 3 taught at University of Alicante in Spain. The objective of the assignment is to build an object-oriented version of Conway's game of life in Java. The assignment is divided into four sub-assignments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to extend the classical envelope theorem from scalar to vector differential programming. The obtained result allows us to measure the quantitative behaviour of a certain set of optimal values (not necessarily a singleton) characterized to become minimum when the objective function is composed with a positive function, according to changes of any of the parameters which appear in the constraints. We show that the sensitivity of the program depends on a Lagrange multiplier and its sensitivity.