8 resultados para limited contacts
em Universidad de Alicante
Resumo:
The conductance of atomic-sized metallic point contacts is shown to be strongly voltage dependent due to quantum interference with impurities even in samples with low impurity concentrations. Transmission through these small contacts depends not only on the local atomic structure at the contact but also on the distribution of impurities or defects within a coherence length of the contact. In contrast with other mesoscopic systems we show that transport through atomic contacts is coherent even at room temperature. The use of a scanning tunneling microscope (STM) makes it possible to fabricate one atom contacts of gold whose transmission can be controlled by manipulation of the contact allowing inelastic spectroscopy in such small contacts.
Resumo:
Using the mechanically controlled break junction technique at low temperatures and under cryogenic vacuum conditions we have studied atomic contacts of several magnetic (Fe, Co, and Ni) and nonmagnetic (Pt) metals, which recently were claimed to show fractional conductance quantization. In the case of pure metals we see no quantization of the conductance nor half quantization, even when high magnetic fields are applied. On the other hand, features in the conductance similar to (fractional) quantization are observed when the contact is exposed to gas molecules. Furthermore, the absence of fractional quantization when the contact is bridged by H2 indicates the current is never fully polarized for the metals studied here. Our results are in agreement with recent model calculations.
Resumo:
Atomic contacts made of ferromagnetic metals present zero-bias anomalies in the differential conductance due to the Kondo effect. These systems provide a unique opportunity to perform a statistical analysis of the Kondo parameters in nanostructures since a large number of contacts can be easily fabricated using break-junction techniques. The details of the atomic structure differ from one contact to another so a large number of different configurations can be statistically analyzed. Here we present such a statistical analysis of the Kondo effect in atomic contacts made from the ferromagnetic transition metals Ni, Co, and Fe. Our analysis shows clear differences between materials that can be understood by fundamental theoretical considerations. This combination of experiments and theory allows us to extract information about the origin and nature of the Kondo effect in these systems and to explore the influence of geometry and valence in the Kondo screening of atomic-sized nanostructures.
Resumo:
We investigate both experimentally and theoretically the evolution of conductance in metallic one-atom contacts under elastic deformation. While simple metals like Au exhibit almost constant conductance plateaus, Al and Pb show inclined plateaus with positive and negative slopes. It is shown how these behaviors can be understood in terms of the orbital structure of the atoms forming the contact. This analysis provides further insight into the issue of conductance quantization in metallic contacts revealing important aspects of their atomic and electronic structures.
Resumo:
Electrochemical methods have recently become an interesting tool for fabricating and characterizing nanostructures at room temperature. Simplicity, low cost and reversibility are some of the advantages of this technique that allows to work at the nanoscale without requiring sophisticated instrumentation. In our experimental setup, we measure the conductance across a nanocontact fabricated either by dissolving a macroscopic gold wire or by depositing gold in between two separated gold electrodes. We have achieved a high level of control on the electrochemical fabrication of atomic-sized contacts in gold. The use of electrochemistry as a reproducible technique to prepare nanocontacts will open several possibilities that are not feasible with other methodologies. It involves, also, the possibility of reproducing experiments that today are made by more expensive, complicated or irreversible methods. As example, we show here a comparison of the results when looking for shell effects in gold nanocontacts with those obtained by other techniques.
Resumo:
We have studied experimentally jump-to-contact (JC) and jump-out-of-contact (JOC) phenomena in gold electrodes. JC can be observed at first contact when two metals approach each other, while JOC occurs in the last contact before breaking. When the indentation depth between the electrodes is limited to a certain value of conductance, a highly reproducible behaviour in the evolution of the conductance can be obtained for hundreds of cycles of formation and rupture. Molecular dynamics simulations of this process show how the two metallic electrodes are shaped into tips of a well-defined crystallographic structure formed through a mechanical annealing mechanism. We report a detailed analysis of the atomic configurations obtained before contact and rupture of these stable structures and obtained their conductance using first-principles quantum transport calculations. These results help us understand the values of conductance obtained experimentally in the JC and JOC phenomena and improve our understanding of atomic-sized contacts and the evolution of their structural characteristics.
Resumo:
This correspondence presents an efficient method for reconstructing a band-limited signal in the discrete domain from its crossings with a sine wave. The method makes it possible to design A/D converters that only deliver the crossing timings, which are then used to interpolate the input signal at arbitrary instants. Potentially, it may allow for reductions in power consumption and complexity in these converters. The reconstruction in the discrete domain is based on a recently-proposed modification of the Lagrange interpolator, which is readily implementable with linear complexity and efficiently, given that it re-uses known schemes for variable fractional-delay (VFD) filters. As a spin-off, the method allows one to perform spectral analysis from sine wave crossings with the complexity of the FFT. Finally, the results in the correspondence are validated in several numerical examples.
Resumo:
This paper deals with the estimation of a time-invariant channel spectrum from its own nonuniform samples, assuming there is a bound on the channel’s delay spread. Except for this last assumption, this is the basic estimation problem in systems providing channel spectral samples. However, as shown in the paper, the delay spread bound leads us to view the spectrum as a band-limited signal, rather than the Fourier transform of a tapped delay line (TDL). Using this alternative model, a linear estimator is presented that approximately minimizes the expected root-mean-square (RMS) error for a deterministic channel. Its main advantage over the TDL is that it takes into account the spectrum’s smoothness (time width), thus providing a performance improvement. The proposed estimator is compared numerically with the maximum likelihood (ML) estimator based on a TDL model in pilot-assisted channel estimation (PACE) for OFDM.