4 resultados para laboratory learning
em Universidad de Alicante
Resumo:
Paper submitted to ACE 2013, 10th IFAC Symposium on Advances in Control Education, University of Sheffield, UK, August 28-30, 2013.
Resumo:
Paper submitted to ICERI2013, the 6th International Conference of Education, Research and Innovation, Seville (Spain), November 18-20, 2013.
Resumo:
We present a purposeful initiative to open new grounds for teaching Geometrical Optics. It is based on the creation of an innovative education networking involving academic staff from three Spanish universities linked together around Optics. Nowadays, students demand online resources such as innovative multimedia tools for complementing the understanding of their studies. Geometrical Optics relies on basics of light phenomena like reflection and refraction and the use of simple optical elements such as mirrors, prisms, lenses, and fibers. The mathematical treatment is simple and the equations are not too complicated. But from our long time experience in teaching to undergraduate students, we realize that important concepts are missed by these students because they do not work ray tracing as they should do. Moreover, Geometrical Optics laboratory is crucial by providing many short Optics experiments and thus stimulating students interest in the study of such a topic. Multimedia applications help teachers to cover those student demands. In that sense, our educational networking shares and develops online materials based on 1) video-tutorials of laboratory experiences and of ray tracing exercises, 2) different online platforms for student self-examinations and 3) computer assisted geometrical optics exercises. That will result in interesting educational synergies and promote student autonomy for learning Optics.
Resumo:
In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone's magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x-3, in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error.