4 resultados para intramolecular hydrogen bond

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first organocatalyzed asymmetric alkylation of activated methylene compounds using benzylic and allylic alcohols as alkylating agents through dual hydrogen bond activation in an SN1-type reaction is reported. This green protocol employs a bis(2-aminobenzoimidazole) in combination with an achiral Brønsted acid as a bifunctional catalytic system and gives the alkylation products with moderate to good enantioselectivities. Although the scope of the reaction is limited, this methodology can be considered as complementary to existing metal-catalyzed processes. In addition, modest results were obtained in a first attempt to perform a metal-free asymmetric Tsuji–Trost reaction using allylic alcohols. Finally, the recovery and reusability of the organocatalyst is also achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of a trans-cyclohexanediamine benzimidazole derivative as a hydrogen-bond catalyst for the electrophilic amination of cyclic 1,3-dicarbonyl compounds is herein presented. High yields and enantioselectivities varying from moderate to excellent are generally obtained using mild reaction conditions and as low as 1 mol% of catalyst loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Equations for the intramolecular surfaces of the 3JHH coupling constants in ethane, ethylene, and acetylene are formulated, and the corresponding coefficients are estimated from calculations at the DFT/B3LYP level. The chosen variables are changes in bond lengths, in the torsion angle φ between the coupled protons Ha and Hb, in bond angles, and in dihedral angles. The 3JHH surface of ethane is formulated as an extended Karplus equation with the coefficients of a truncated Fourier series on the torsion angle φ expanded as second-order Taylor series in the chosen variables taking into account the invariance of 3JHH under reflections and rotations of nuclear coordinates. Partial vibrational contributions from linear and square terms corresponding to changes in the geometry of the Ha − Ca − Cb − Hb fragment are important while those from cross terms are small with a few exceptions. The 3JHH surface of ethane is useful to predict contributions to 3JHH from changes in local geometry of derivatives but vibrational contributions are predicted less satisfactorily. The predicted values at the B3LYP/BS2 level of the 3JHH couplings (vibrational contributions at 300 K) from equilibrium geometries are 9.79 (−0.17) for acetylene, and 17.08 (1.93) and 10.73(0.93) for the trans and cis couplings of ethylene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hexahydride complex OsH6(PiPr3)2 (1) activates the C–OMe bond of 1-(2-methoxy-2-oxoethyl)-3-methylimidazolium chloride (2), in addition to promoting the direct metalation of the imidazolium group, to afford a five-coordinate OsCl(acyl-NHC)(PiPr3)2 (3) compound. The latter coordinates carbon monoxide, oxygen, and molecular hydrogen to give the corresponding carbonyl (4), dioxygen (5), and dihydrogen (6) derivatives. Complex 3 also promotes the heterolytic bond activation of pinacolborane (HBpin), using the acyl oxygen atom as a pendant Lewis base. The hydride ligand and the Bpin substituent of the Fischer-type carbene of the resulting complex 7 activate the O–H bond of alcohols and water. As a consequence, complex 3 is a metal ligand cooperating catalyst for the generation of molecular hydrogen, by means of both the alcoholysis and hydrolysis of pinacolborane, via the intermediates 7 and 6.