1 resultado para information contexts, intersubjectivity, everydaylife information seeking
em Universidad de Alicante
Filtro por publicador
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (5)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (6)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Cambridge University Engineering Department Publications Database (4)
- CentAUR: Central Archive University of Reading - UK (6)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (2)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (2)
- Helda - Digital Repository of University of Helsinki (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (3)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- Queensland University of Technology - ePrints Archive (778)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (15)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (2)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (2)
- Université de Montréal, Canada (4)
- University of Michigan (12)
- University of Queensland eSpace - Australia (4)
- University of Washington (5)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
In this paper, we propose a novel filter for feature selection. Such filter relies on the estimation of the mutual information between features and classes. We bypass the estimation of the probability density function with the aid of the entropic-graphs approximation of Rényi entropy, and the subsequent approximation of the Shannon one. The complexity of such bypassing process does not depend on the number of dimensions but on the number of patterns/samples, and thus the curse of dimensionality is circumvented. We show that it is then possible to outperform a greedy algorithm based on the maximal relevance and minimal redundancy criterion. We successfully test our method both in the contexts of image classification and microarray data classification.