9 resultados para government information
em Universidad de Alicante
Resumo:
In this paper we explore the use of semantic classes in an existing information retrieval system in order to improve its results. Thus, we use two different ontologies of semantic classes (WordNet domain and Basic Level Concepts) in order to re-rank the retrieved documents and obtain better recall and precision. Finally, we implement a new method for weighting the expanded terms taking into account the weights of the original query terms and their relations in WordNet with respect to the new ones (which have demonstrated to improve the results). The evaluation of these approaches was carried out in the CLEF Robust-WSD Task, obtaining an improvement of 1.8% in GMAP for the semantic classes approach and 10% in MAP employing the WordNet term weighting approach.
Resumo:
Nowadays there is a big amount of biomedical literature which uses complex nouns and acronyms of biological entities thus complicating the task of retrieval specific information. The Genomics Track works for this goal and this paper describes the approach we used to take part of this track of TREC 2007. As this is the first time we participate in this track, we configurated a new system consisting of the following diferenciated parts: preprocessing, passage generation, document retrieval and passage (with the answer) extraction. We want to call special attention to the textual retrieval system used, which was developed by the University of Alicante. Adapting the resources for the propouse, our system has obtained precision results over the mean and median average of the 66 official runs for the Document, Aspect and Passage2 MAP; and in the case of Passage MAP we get nearly the median and mean value. We want to emphasize we have obtained these results without incorporating specific information about the domain of the track. For the future, we would like to further develop our system in this direction.
Resumo:
In this paper, we propose a novel filter for feature selection. Such filter relies on the estimation of the mutual information between features and classes. We bypass the estimation of the probability density function with the aid of the entropic-graphs approximation of Rényi entropy, and the subsequent approximation of the Shannon one. The complexity of such bypassing process does not depend on the number of dimensions but on the number of patterns/samples, and thus the curse of dimensionality is circumvented. We show that it is then possible to outperform a greedy algorithm based on the maximal relevance and minimal redundancy criterion. We successfully test our method both in the contexts of image classification and microarray data classification.
Resumo:
The present paper aims to determine the level of implementation of innovations in Spanish local government as well as to identify which types of innovations are most common. The paper also considers the link between innovative behavior and organizational size. However, since innovations cannot occur as isolated phenomena but rather as a part of corporate strategy, the study compares the innovative behavior of the local governments analyzed with their typologies or strategic profiles. In order to achieve the aforementioned aims, the paper uses a survey of the Human Resource Managers of Town Halls in the largest Spanish municipalities. The results of this survey show that the most frequent innovations in the local governments analyzed are collaborative; the largest town halls show more propensities to innovate and they focus on external relationships which are collaborative and on the basis on Information and Communication Technologies. The study reconfirms that town halls with a prospective profile are the most innovative.
Resumo:
In this paper we present a complete system for the treatment of both geographical and temporal dimensions in text and its application to information retrieval. This system has been evaluated in both the GeoTime task of the 8th and 9th NTCIR workshop in the years 2010 and 2011 respectively, making it possible to compare the system to contemporary approaches to the topic. In order to participate in this task we have added the temporal dimension to our GIR system. The system proposed here has a modular architecture in order to add or modify features. In the development of this system, we have followed a QA-based approach as well as multi-search engines to improve the system performance.
Resumo:
This introduction provides an overview of the state-of-the-art technology in Applications of Natural Language to Information Systems. Specifically, we analyze the need for such technologies to successfully address the new challenges of modern information systems, in which the exploitation of the Web as a main data source on business systems becomes a key requirement. It will also discuss the reasons why Human Language Technologies themselves have shifted their focus onto new areas of interest very directly linked to the development of technology for the treatment and understanding of Web 2.0. These new technologies are expected to be future interfaces for the new information systems to come. Moreover, we will review current topics of interest to this research community, and will present the selection of manuscripts that have been chosen by the program committee of the NLDB 2011 conference as representative cornerstone research works, especially highlighting their contribution to the advancement of such technologies.
Resumo:
Automatic Text Summarization has been shown to be useful for Natural Language Processing tasks such as Question Answering or Text Classification and other related fields of computer science such as Information Retrieval. Since Geographical Information Retrieval can be considered as an extension of the Information Retrieval field, the generation of summaries could be integrated into these systems by acting as an intermediate stage, with the purpose of reducing the document length. In this manner, the access time for information searching will be improved, while at the same time relevant documents will be also retrieved. Therefore, in this paper we propose the generation of two types of summaries (generic and geographical) applying several compression rates in order to evaluate their effectiveness in the Geographical Information Retrieval task. The evaluation has been carried out using GeoCLEF as evaluation framework and following an Information Retrieval perspective without considering the geo-reranking phase commonly used in these systems. Although single-document summarization has not performed well in general, the slight improvements obtained for some types of the proposed summaries, particularly for those based on geographical information, made us believe that the integration of Text Summarization with Geographical Information Retrieval may be beneficial, and consequently, the experimental set-up developed in this research work serves as a basis for further investigations in this field.
Resumo:
The retina is a very complex neural structure, which performs spatial, temporal, and chromatic processing on visual information and converts it into a compact ‘digital’ format composed of neural impulses. This paper presents a new compiler-based framework able to describe, simulate and validate custom retina models. The framework is compatible with the most usual neural recording and analysis tools, taking advantage of the interoperability with these kinds of applications. Furthermore it is possible to compile the code to generate accelerated versions of the visual processing models compatible with COTS microprocessors, FPGAs or GPUs. The whole system represents an ongoing work to design and develop a functional visual neuroprosthesis. Several case studies are described to assess the effectiveness and usefulness of the framework.
Resumo:
In this article we describe a semantic localization dataset for indoor environments named ViDRILO. The dataset provides five sequences of frames acquired with a mobile robot in two similar office buildings under different lighting conditions. Each frame consists of a point cloud representation of the scene and a perspective image. The frames in the dataset are annotated with the semantic category of the scene, but also with the presence or absence of a list of predefined objects appearing in the scene. In addition to the frames and annotations, the dataset is distributed with a set of tools for its use in both place classification and object recognition tasks. The large number of labeled frames in conjunction with the annotation scheme make this dataset different from existing ones. The ViDRILO dataset is released for use as a benchmark for different problems such as multimodal place classification and object recognition, 3D reconstruction or point cloud data compression.