3 resultados para first-row transition

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

New data on brachiopod assemblages recorded in the Eastern Subbetic area (Alicante, SE Spain) and attributed to the Early Bajocian (Humphriesianum Zone and/or immediately older) are provided. Eleven species have been distinguished and reported for the first time in the Subbetic domain of the Betic Cordillera. The description of the morphological evidences on each analysed taxa, especially in relation to their internal morphology, brings new implications in the systematics of the Middle Jurassic brachiopods. The analysis of faunistic affinity between the recorded assemblages and those from other palaeogeographic domains, shows that the Subbetic brachiopod fauna has a clear Mediterranean affinity, as proved by the different species belonging to the genera Striirhynchia, Septocrurella, Mondegia?, Karadagithyris, Linguithyris, Papodina?, Viallithyris?, and Zugmayeria?. It is also evidenced that the Early-Middle Jurassic transition in the Eastern Subbetic accounted, in qualitative terms, a remarkable interval of faunistic renewal in the brachiopod assemblages, strongly influenced by a complex tectonic and stratigraphic framework controlled by a period of intense extensional tectonics, globally framed in the evolution of the Atlantic Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed sedimentological and paleontological analysis of the uppermost Miocene (Messinian)–Pliocene boundary at the northern border of the Bajo Segura Basin, southeastern Spain, was carried out in order to describe the evolution of the regional paleocoastline during the Pliocene reflooding of the Mediterranean immediately after the sea-level fall related to the Messinian Salinity Crisis. Multiple trace fossils typical of firm- and hardgrounds were recognized, allowing identification of Glossifungites (two different types), Entobia, and Gnathichnus ichnofacies. Trace-fossil analysis showed that lithology and media consistency exerted considerable control on the development of the different ichnocoenoses and that there was a clear decrease in hydrodynamic energy from a coastal to a shallow-water shelf environment related to progressive sea-level rise. Ichnological and sedimentological data provide evidence that the definitive flooding of the Mediterranean was rapid and synchronous throughout the northern margin of the Bajo Segura Basin. The following model for the Pliocene transgression in the study area is therefore proposed: (1) the marine ingression penetrated along the incised paleovalleys carved as a consequence of the fall in sea level, where the first two Pliocene systems were deposited (P0–P1); (2) during the maximum flooding surface of the transgression, the sea overflowed the margins of the paleovalleys and extended throughout the entire northern margin of the basin; and (3) the third Pliocene system was deposited, forming the lower part of a highstand systems tract (P2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the conduction band spin splitting that arises in transition metal dichalcogenide (TMD) semiconductor monolayers such as MoS2, MoSe2, WS2, and WSe2 due to the combination of spin-orbit coupling and lack of inversion symmetry. Two types of calculation are done. First, density functional theory (DFT) calculations based on plane waves that yield large splittings, between 3 and 30 meV. Second, we derive a tight-binding model that permits to address the atomic origin of the splitting. The basis set of the model is provided by the maximally localized Wannier orbitals, obtained from the DFT calculation, and formed by 11 atomiclike orbitals corresponding to d and p orbitals of the transition metal (W, Mo) and chalcogenide (S, Se) atoms respectively. In the resulting Hamiltonian, we can independently change the atomic spin-orbit coupling constant of the two atomic species at the unit cell, which permits to analyze their contribution to the spin splitting at the high symmetry points. We find that—in contrast to the valence band—both atoms give comparable contributions to the conduction band splittings. Given that these materials are most often n-doped, our findings are important for developments in TMD spintronics.