4 resultados para fatty acids and fecundity

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aryl imidazole-1-sulfonates are efficiently cross-coupled with arylboronic acids and potassium aryltrifluoroborates using only 0.5 mol % of oxime palladacycles 1 under aqueous conditions at 110 °C. Under these simple phosphane-free reaction conditions a wide array of biaryl derivatives has been prepared in high yields. This methodology allows in situ phenol sulfonation and one-pot Suzuki arylation as well as the employment of microwave irradiation conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-Tosyl-(S a)-binam-l-prolinamide is an efficient catalyst for the aqueous aldol reaction between ketones and glyoxylic acid, as the monohydrate or as an aqueous solution, or a 50% toluene solution of ethyl glyoxylate. These reactions led to the formation of chiral α-hydroxy-γ-keto carboxylic acids and esters in high levels of diastereo- and enantioselectivities (up to 97% ee), providing mainly anti aldol products. Only cyclopentanone and cyclohexane-1,4-dione afforded an almost 1:1 mixture of the syn/anti-diastereoisomers; however, the reaction between 4-phenylcyclohexanone and ethyl glyoxylate gave the corresponding syn,syn-product as the major diastereoisomer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functionalized carbon nanotubes (CNTs) using three aminobenzene acids with different functional groups (carboxylic, sulphonic, phosphonic) in para position have been synthesized through potentiodynamic treatment in acid media under oxidative conditions. A noticeable increase in the capacitance for the functionalized carbon nanotubes mainly due to redox processes points out the formation of an electroactive polymer thin film on the CNTs surface along with covalently bonded functionalities. The CNTs functionalized using aminobenzoic acid rendered the highest capacitance values and surface nitrogen content, while the presence of sulfur and/or phosphorus groups in the aminobenzene structure yielded a lower functionalization degree. The oxygen reduction reaction (ORR) activity of the functionalized samples was similar to that of the parent CNTs, independently of the functional group present in the aminobenzene acid. Interestingly, a heat treatment in N2 atmosphere with a very low O2 concentration (3125 ppm) at 800 °C of the CNTs functionalized with aminobenzoic acid produced a material with high amounts of surface oxygen and nitrogen groups (12 and 4% at., respectively), that seem to modulate the electron-donor properties of the resulting material. The onset potential and limiting current for ORR was enhanced for this material. These are promising results that validates the use of electrochemistry for the synthesis of novel N-doped electrocatalysts for ORR in combination with adequate heat treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel and selective electrochemical functionalization of a highly reactive superporous zeolite templated carbon (ZTC) with two different aminobenzene acids (2-aminobenzoic and 4-aminobenzoic acid) was achieved. The functionalization was done through potentiodynamic treatment in acid media under oxidative conditions, which were optimized to preserve the unique ZTC structure. Interestingly, it was possible to avoid the electrochemical oxidation of the highly reactive ZTC structure by controlling the potential limit of the potentiodynamic experiment in presence of aminobenzene acids. The electrochemical characterization demonstrated the formation of polymer chains along with covalently bonded functionalities to the ZTC surface. The functionalized ZTCs showed several redox processes, producing a capacitance increase in both basic and acid media. The rate performance showed that the capacitance increase is retained at scan rates as high as 100 mV s−1, indicating that there is a fast charge transfer between the polymer chains formed inside the ZTC porosity or the new surface functionalities and the ZTC itself. The success of the proposed approach was also confirmed by using other characterization techniques, which confirmed the presence of different nitrogen groups in the ZTC surface. This promising method could be used to achieve highly selective functionalization of highly porous carbon materials.