10 resultados para distribución del espacio

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

El enorme desarrollo que las viviendas de uso temporal presenta en los municipios litorales valencianos permite reconocer un escenario de enorme complejidad y amplitud en el que los usos turísticos y la segunda residencia se mezclan sin solución de continuidad. Sin ánimo de agotar las posibilidades de estudio de este fenómeno, en las páginas siguientes se plantea su análisis a partir de la propuesta de diversas caracterizaciones, según la proporción entre oferta legal y alegal, su distribución territorial y los modelos de implantación sobre el espacio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En su camino de socialización desde la dependencia infantil hasta la autonomía personal, los jóvenes se enfrentan a una simultaneidad de marcos culturales y de redes de relaciones preexistentes -familia, amigos, pareja, escuela, medios de comunicación, ideologías, partidos políticos- de los que seleccionan y jerarquizan valores e ideales, estéticas y modas, formas de convivencia y de vida, que contribuyen a modelar su conducta, su sensibilidad y su pensamiento. El espacio doméstico familiar incide, especialmente, en la formación de la identidad de los jóvenes. En este artículo, a través del análisis pormenorizado de la Encuesta de Estilos de Vida para el caso de España y la Comunidad Valenciana, se corrobora este principio desde el análisis de la permanencia y salida del domicilio familiar, la comunicación y grado de permisividad en el hogar y la distribución de poder en el espacio doméstico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabajo de investigación es pionero y original ya que nunca antes se ha realizado un estudio del tejón (Melesmeles) dentro del ámbito valenciano y más concretamente sobre la relación de su distribución con los factores geográficos que la condicionan en el Parque Natural Sierra de Mariola. Un mejor conocimiento de su ocupación en el espacio será de interés para la definición de medidas de gestión de fauna del Parque. En 2009, utilizando técnicas de fototrampeo se recopilaron 29.941 imágenes con algún contacto animal. De estas imágenes, el 0,16% de las fotografías registradas son de tejón y se ha detectado su presencia en 6 de las 63 cuadrículas (4 Km2) del Parque Natural Sierra de Mariola (9,38%). Este estudio ha permitido integrar la información recopilada en campo con las bases de datos existentes para concluir que la situación del tejón en Sierra de Mariola no es preocupante.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durante los últimos años ha sido creciente el uso de las unidades de procesamiento gráfico, más conocidas como GPU (Graphic Processing Unit), en aplicaciones de propósito general, dejando a un lado el objetivo para el que fueron creadas y que no era otro que el renderizado de gráficos por computador. Este crecimiento se debe en parte a la evolución que han experimentado estos dispositivos durante este tiempo y que les ha dotado de gran potencia de cálculo, consiguiendo que su uso se extienda desde ordenadores personales a grandes cluster. Este hecho unido a la proliferación de sensores RGB-D de bajo coste ha hecho que crezca el número de aplicaciones de visión que hacen uso de esta tecnología para la resolución de problemas, así como también para el desarrollo de nuevas aplicaciones. Todas estas mejoras no solamente se han realizado en la parte hardware, es decir en los dispositivos, sino también en la parte software con la aparición de nuevas herramientas de desarrollo que facilitan la programación de estos dispositivos GPU. Este nuevo paradigma se acuñó como Computación de Propósito General sobre Unidades de Proceso Gráfico (General-Purpose computation on Graphics Processing Units, GPGPU). Los dispositivos GPU se clasifican en diferentes familias, en función de las distintas características hardware que poseen. Cada nueva familia que aparece incorpora nuevas mejoras tecnológicas que le permite conseguir mejor rendimiento que las anteriores. No obstante, para sacar un rendimiento óptimo a un dispositivo GPU es necesario configurarlo correctamente antes de usarlo. Esta configuración viene determinada por los valores asignados a una serie de parámetros del dispositivo. Por tanto, muchas de las implementaciones que hoy en día hacen uso de los dispositivos GPU para el registro denso de nubes de puntos 3D, podrían ver mejorado su rendimiento con una configuración óptima de dichos parámetros, en función del dispositivo utilizado. Es por ello que, ante la falta de un estudio detallado del grado de afectación de los parámetros GPU sobre el rendimiento final de una implementación, se consideró muy conveniente la realización de este estudio. Este estudio no sólo se realizó con distintas configuraciones de parámetros GPU, sino también con diferentes arquitecturas de dispositivos GPU. El objetivo de este estudio es proporcionar una herramienta de decisión que ayude a los desarrolladores a la hora implementar aplicaciones para dispositivos GPU. Uno de los campos de investigación en los que más prolifera el uso de estas tecnologías es el campo de la robótica ya que tradicionalmente en robótica, sobre todo en la robótica móvil, se utilizaban combinaciones de sensores de distinta naturaleza con un alto coste económico, como el láser, el sónar o el sensor de contacto, para obtener datos del entorno. Más tarde, estos datos eran utilizados en aplicaciones de visión por computador con un coste computacional muy alto. Todo este coste, tanto el económico de los sensores utilizados como el coste computacional, se ha visto reducido notablemente gracias a estas nuevas tecnologías. Dentro de las aplicaciones de visión por computador más utilizadas está el registro de nubes de puntos. Este proceso es, en general, la transformación de diferentes nubes de puntos a un sistema de coordenadas conocido. Los datos pueden proceder de fotografías, de diferentes sensores, etc. Se utiliza en diferentes campos como son la visión artificial, la imagen médica, el reconocimiento de objetos y el análisis de imágenes y datos de satélites. El registro se utiliza para poder comparar o integrar los datos obtenidos en diferentes mediciones. En este trabajo se realiza un repaso del estado del arte de los métodos de registro 3D. Al mismo tiempo, se presenta un profundo estudio sobre el método de registro 3D más utilizado, Iterative Closest Point (ICP), y una de sus variantes más conocidas, Expectation-Maximization ICP (EMICP). Este estudio contempla tanto su implementación secuencial como su implementación paralela en dispositivos GPU, centrándose en cómo afectan a su rendimiento las distintas configuraciones de parámetros GPU. Como consecuencia de este estudio, también se presenta una propuesta para mejorar el aprovechamiento de la memoria de los dispositivos GPU, permitiendo el trabajo con nubes de puntos más grandes, reduciendo el problema de la limitación de memoria impuesta por el dispositivo. El funcionamiento de los métodos de registro 3D utilizados en este trabajo depende en gran medida de la inicialización del problema. En este caso, esa inicialización del problema consiste en la correcta elección de la matriz de transformación con la que se iniciará el algoritmo. Debido a que este aspecto es muy importante en este tipo de algoritmos, ya que de él depende llegar antes o no a la solución o, incluso, no llegar nunca a la solución, en este trabajo se presenta un estudio sobre el espacio de transformaciones con el objetivo de caracterizarlo y facilitar la elección de la transformación inicial a utilizar en estos algoritmos.

Relevância:

100.00% 100.00%

Publicador: