5 resultados para citrate potassium
em Universidad de Alicante
Resumo:
Aryl imidazole-1-sulfonates are efficiently cross-coupled with arylboronic acids and potassium aryltrifluoroborates using only 0.5 mol % of oxime palladacycles 1 under aqueous conditions at 110 °C. Under these simple phosphane-free reaction conditions a wide array of biaryl derivatives has been prepared in high yields. This methodology allows in situ phenol sulfonation and one-pot Suzuki arylation as well as the employment of microwave irradiation conditions.
Resumo:
A systematic study on the influence of carbon on the signal of a large number of hard-to-ionize elements (i.e. B, Be, P, S, Zn, As, Se, Pd, Cd, Sb, I, Te, Os, Ir, Pt, Au, and Hg) in inductively coupled plasma–mass spectrometry has been carried out. To this end, carbon matrix effects have been evaluated considering different plasma parameters (i.e. nebulizer gas flow rate, r.f. power and sample uptake rate), sample introduction systems, concentration and type of carbon matrix (i.e. glycerol, citric acid, potassium citrate and ammonium carbonate) and type of mass spectrometer (i.e. quadrupole filter vs. double-focusing sector field mass spectrometer). Experimental results show that P, As, Se, Sb, Te, I, Au and Hg sensitivities are always higher for carbon-containing solutions than those obtained without carbon. The other hard-to-ionize elements (Be, B, S, Zn, Pd, Cd, Os, Ir and Pt) show no matrix effect, signal enhancement or signal suppression depending on the experimental conditions selected. The matrix effects caused by the presence of carbon are explained by changes in the plasma characteristics and the corresponding changes in ion distribution in the plasma (as reflected in the signal behavior plot, i.e. the signal intensity as a function of the nebulizer gas flow rate). However, the matrix effects for P, As, Se, Sb, Te, I, Au and Hg are also related to an increase in analyte ion population caused as a result of charge transfer reactions involving carbon-containing charged species in the plasma. The predominant specie is C+, but other species such as CO+, CO2+, C2+ and ArC+ could also play a role. Theoretical data suggest that B, Be, S, Pd, Cd, Os, Ir and Pt could also be involved in carbon based charge transfer reactions, but no experimental evidence substantiating this view has been found.
Resumo:
Detailed electronic structure calculations of picene clusters doped by potassium modeling the crystalline K3picene structure show that while two electrons are completely transferred from potassium atoms to the lowest-energy unoccupied molecular orbital of pristine picene, the third one remains closely attached to both material components. Multiconfigurational analysis is necessary to show that many structures of almost degenerate total energies compete to define the cluster ground state. Our results prove that the 4s orbital of potassium should be included in any interaction model describing the material. We propose a quarter-filled two-orbital model as the most simple model capable of describing the electronic structure of K-intercalated picene. Precise solutions obtained by a development of the Lanczos method show low-energy electronic excitations involving orbitals located at different positions. Consequently, metallic transport is possible in spite of the clear dominance of interaction over hopping.
Resumo:
Palladium nanoparticles supported on graphene platelets have been efficiently used as catalyst in the Suzuki–Miyaura coupling between aryl bromides and potassium aryltrifluoroborates using 0.1 mol% of Pd and potassium carbonate as base in MeOH/H2O as solvent at 80 °C. The reaction can be performed using conventional and microwave heating showing the catalyst high reusability, particularly with microwaves, where lower aggregation of Pd nanoparticles has been observed. A dissolution/re-deposition catalytic mechanism is proposed, based on the fact that palladium leaching to the solution is detected under microwave irradiation.
Resumo:
There is increasing evidence to support the notion that membrane proteins, instead of being isolated components floating in a fluid lipid environment, can be assembled into supramolecular complexes that take part in a variety of cooperative cellular functions. The interplay between lipid-protein and protein-protein interactions is expected to be a determinant factor in the assembly and dynamics of such membrane complexes. Here we report on a role of anionic phospholipids in determining the extent of clustering of KcsA, a model potassium channel. Assembly/disassembly of channel clusters occurs, at least partly, as a consequence of competing lipid-protein and protein-protein interactions at nonannular lipid binding sites on the channel surface and brings about profound changes in the gating properties of the channel. Our results suggest that these latter effects of anionic lipids are mediated via the Trp67–Glu71–Asp80 inactivation triad within the channel structure and its bearing on the selectivity filter.