4 resultados para cis-4-decenoic acid
em Universidad de Alicante
Resumo:
Chiral complexes formed by privileged phosphoramidites derived from chiral binol and optically pure Davies’ amines, and copper(II) triflate, silver(I) triflate or silver(I) benzoate are excellent catalysts for the general 1,3-dipolar cycloaddition between nitroalkenes and azomethine ylides generated from α-amino acid derived imino esters. These three methods can be conducted at room temperature to afford the exo-cycloadducts (4,5-trans-2,5-cis-4-nitroprolinates) with high diastereoselectivity and high enantioselectivity. In general, the three procedures are complementary but silver catalysts are more versatile and less sensitive to sterically congested starting materials.
Resumo:
Chiral complexes formed by privileged phosphoramidites and silver triflate or silver benzoate are excellent catalysts for the general 1,3-dipolar cycloaddition between azomethine ylides generated from α-amino acid-derived imino esters and nitroalkenes affording with high dr the exo-cycloadducts 4,5-trans-2,5-cis-4-nitroprolinates in high ee at room temperature. In general, better results are obtained using silver rather than copper(II) complexes. In many cases the exo-cycloadducts can be obtained in enantiomerically pure form just after simple recrystallization. The mechanism and the justification of the experimentally observed stereodiscrimination of the process are supported by DFT calculations. These enantiomerically enriched exo-nitroprolinates can be used as reagents for the synthesis of nitropiperidines, by ester reduction and ring expansion, which are inhibitors of farnesyltransferase.
Resumo:
Enantiomerically pure carbamate-monoprotected trans-cyclohexane-1,2-diamines are used as chiral organocatalysts for the addition of aryl ketones and acetone to nitroalkenes to give enantioenriched β-substituted γ-nitroketones. The reaction was performed in the presence of 3,4-dimethoxybenzoic acid as an additive, in chloroform as the solvent at room temperature, achieving enantioselectivities up to 96%. Theoretical calculations are used to justify the observed sense of the stereoinduction.
Resumo:
A novel and selective electrochemical functionalization of a highly reactive superporous zeolite templated carbon (ZTC) with two different aminobenzene acids (2-aminobenzoic and 4-aminobenzoic acid) was achieved. The functionalization was done through potentiodynamic treatment in acid media under oxidative conditions, which were optimized to preserve the unique ZTC structure. Interestingly, it was possible to avoid the electrochemical oxidation of the highly reactive ZTC structure by controlling the potential limit of the potentiodynamic experiment in presence of aminobenzene acids. The electrochemical characterization demonstrated the formation of polymer chains along with covalently bonded functionalities to the ZTC surface. The functionalized ZTCs showed several redox processes, producing a capacitance increase in both basic and acid media. The rate performance showed that the capacitance increase is retained at scan rates as high as 100 mV s−1, indicating that there is a fast charge transfer between the polymer chains formed inside the ZTC porosity or the new surface functionalities and the ZTC itself. The success of the proposed approach was also confirmed by using other characterization techniques, which confirmed the presence of different nitrogen groups in the ZTC surface. This promising method could be used to achieve highly selective functionalization of highly porous carbon materials.