4 resultados para chemical heat treatment
em Universidad de Alicante
Resumo:
Results show that it is possible to activate a low softening point isotropic petroleum pitch, without intermediate pre-treatments, by chemical activation with KOH. The chemical activation is carried out by direct heat treatment of a mixture of the isotropic pitch and KOH. It produces activated carbons (ACs) with micropore volumes as high as 1.12 cm3/g, and BET surface areas around 3000 m2/g. The activating agent/precursor ratios studied (from 1/1 to 4/1; wt./wt.) show, as expected, that increasing the ratio enhances the adsorption characteristics of the resulting AC.
Resumo:
A method using iodine has been developed for the stabilisation of low softening point (SP) pitch fibres that avoids air stabilisation in the production of carbon fibres (CF). The interaction between iodine and petroleum pitches has been studied by following the changes in the hydrogen content, aromatic or aliphatic, during the heat treatment of iodine-treated pitch fibres. Two low SP petroleum pitches were used and the iodine-treated pitch fibres were analysed by TGA, DSC, DRIFT, XPS and SEM. The results confirm that using this novel method pitches with low SP can be used to prepare CF with two advantages, compared with conventional methods. The stabilisation time is considerably reduced and treatments to increase the SP, usually required when low SP pitches are used to prepare CF, can be avoided.
Resumo:
The paper provides interesting evidences that a low softening point isotropic petroleum pitch can be used as a good carbon precursor for the preparation of activated carbons. The activation is carried out by KOH and/or NaOH and the resulting activated carbons present well developed porosity. Such hydroxide activations can be done directly on the pristine petroleum pitch (P) or on the pitch that has been submitted to an air stabilisation followed by a N2 heat treatment (TAN). In general, KOH activation produces better results than NaOH, both in terms of porosity and yield, the results obtained for the activation of TAN being impressive because of the good porosity developments and high yields reached. The different treatments carried out over the petroleum pitch precursor clearly show that they significantly influence the extent of microporosity development. This is due to different changes occurring in the porous structure of the precursor as a function of the treatment carried out. The efficiency of the activation process increases as the mesophase content of the precursor decreases, as well as the mesophase formation during the activation process is avoided.
Resumo:
Nanostructured carbons with relatively high nitrogen content (3–8%) and different micro and mesoporosity ratio were prepared by activation of polyaniline (PANI) with a ZnCl2–NaCl mixture in the proportion of the eutectic (melting point 270 °C). It was found that the activated carbons consisted of agglomerated nanoparticles. ZnCl2 plays a key role in the development of microporosity and promotes the binding between PANI nanoparticles during heat treatment, whereas NaCl acts as a template for the development of mesoporosity of larger size. Carbons with high micropore and mesopore volumes, above 0.6 and 0.8 cm3/g, respectively, have been obtained. Furthermore, these materials have been tested for CO2 capture and storage at pressures up to 4 MPa. The results indicate that the nitrogen groups present in the surface do not seem to affect to the amount of CO2 adsorbed, not detecting strong interactions between CO2 molecules and nitrogen functional groups of the carbon, which are mainly pyridinic and pyrrolic groups.