10 resultados para aromatic hydrocarbon

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first few low-lying spin states of alternant polycyclic aromatic hydrocarbon (PAH) molecules of several shapes showing defect states induced by contour hydrogenation have been studied both by ab initio methods and by a precise numerical solution of Pariser-Parr-Pople (PPP) interacting model. In accordance with Lieb's theorem, the ground state shows a spin multiplicity equal to one for balanced molecules, and it gets larger values for imbalanced molecules (that is, when the number of π electrons on both subsets is not equal). Furthermore, we find a systematic decrease of the singlet-triplet splitting as a function of the distance between defects, regardless of whether the ground state is singlet or triplet. For example, a splitting smaller than 0.001 eV is obtained for a medium size C46H28 PAH molecule (di-hydrogenated [11]phenacene) showing a singlet ground state. We conclude that π electrons unbound by lattice defects tend to remain localized and unpaired even when long-range Coulomb interaction is taken into account. Therefore they show a biradical character (polyradical character for more than two defects) and should be studied as two or more local doublets. The implications for electron transport are potentially important since these unpaired electrons can trap traveling electrons or simply flip their spin at a very small energy cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101–107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14–46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π–π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold start tests are carried out to evaluate the performance of copper-exchanged zeolites as hydrocarbon traps under simulated gasoline car exhaust gases, paying special attention to the role of copper in the performance of these zeolites. It is concluded that the partial substitution of the protons in the parent H-ZSM-5 zeolite is highly beneficial for hydrocarbon trapping due to the formation of selective adsorption sites with specific affinity for the different exhaust components. However, it is also observed that uncontrolled exchanging process conditions could lead to the presence of CuO nanoparticles in the zeolite surface, which seem to block the pore structure of the zeolite, decreasing the hydrocarbon trap efficiency. Among all the zeolites studied, the results point out that a CuH-ZSM-5 with a partial substitution of extra-framework protons by copper cations and without any detectable surface CuO nanoparticles is the zeolite that showed the best performance under simulated cold start conditions due to both the high stability and the hydrocarbon retaining capacity of this sample during the consecutive cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Do polyacenes, circumacenes, periacenes, nanographenes, and graphene nanoribbons show a spin polarized ground state? In this work, we present monodeterminantal (Hartree–Fock (HF) and density functional theory (DFT) types), and multideterminantal calculations (Møller–Plesset and Coupled Cluster), for several families of unsaturated organic molecules (n-Acenes, n-Periacenes and n-Circumacenes). All HF calculations and many DFT show a spin-polarized (antiferromagnetic) ground state, in agreement with previous calculations. Nevertheless, the multideterminantal calculations, carried out with perturbative and variational wavefunctions, show that the more stable state is obtained starting from the unpolarized HF wavefunction. The trend of the stabilization of wavefunctions (polarized or unpolarized) with respect to exchange and correlation potentials, and to the number of benzene rings, has been analyzed. A study of the spin (〈Ŝ2〉) and the spin density on the carbon atoms has also been carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anodic oxidation of 1-(trifluoromethyl)benzene in dry acetonitrile/Bu4NBF4 under constant potential conditions led to 2-(trifluoromethyl) acetanilide in 86% yield. Other experimental conditions, as the use of constant current or the change in the supporting electrolyte were considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high percentage of hydrocarbon (HC) emissions from gasoline vehicles occur during the cold-start period. Among the alternatives proposed to reduce these HC emissions, the use of zeolites before the three-way catalyst (TWC) is thought to be very effective. Zeolites are the preferred adsorbents for this application; however, to avoid high pressure drops, supported zeolites are needed. In this work, two coating methods (dip-coating and in situ crystallization) are optimized to prepare BETA zeolite thin films supported on honeycomb monoliths with tunable properties. The important effect of the density of the thin film in the final performance as a HC trap is demonstrated. A highly effective HC trap is prepared showing 100 % toluene retention, accomplishing the desired performance as a HC trap, desorbing propene at temperatures close to 300 °C, and remaining stable after cycling. The use of this material before the TWC is very promising, and works towards achieving the sustainability and environmental protection goals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key target to reduce current hydrocarbon emissions from vehicular exhaust is to improve their abatement under cold-start conditions. Herein, we demonstrate the potential of factorial analysis to design a highly efficient catalytic trap. The impact of the synthesis conditions on the preparation of copper-loaded ZSM-5 is clearly revealed by XRD, N2 sorption, FTIR, NH3-TPD, SEM and TEM. A high concentration of copper nitrate precursor in the synthesis improves the removal of hydrocarbons, providing both strong adsorption sites for hydrocarbon retention at low temperature and copper oxide nanoparticles for full hydrocarbon catalytic combustion at high temperature. The use of copper acetate precursor leads to a more homogeneous dispersion of copper oxide nanoparticles also providing enough catalytic sites for the total oxidation of hydrocarbons released from the adsorption sites, although lower copper loadings are achieved. Thus, synthesis conditions leading to high copper loadings jointly with highly dispersed copper oxide nanoparticles would result in an exceptional catalytic trap able to reach superior hydrocarbon abatement under highly demanding operational conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three activated carbons with different surface chemical groups were used to analyse the influence of these groups on their adsorption capacities towards aromatic-type molecules whose adsorption is based on π-π interactions with surface arene centres. The three activated carbons studied were a low-functionalized carbon (Merck), an oxygen-rich carbon obtained by HNO3 oxidation of Merck, and a nitrogen-rich carbon also prepared from Merck by mild HNO3 oxidation followed by treatment with a dicyanodiamide/dimethyl formamide mixture at 300 °C. The nature of the surface chemical groups of the three activated carbons was investigated by both physical and chemical techniques (TPD, XPS, Boehm analysis and pH potentiometric titration). A systematic study of the adsorptions of a series of analogous aromatic adsorbates on the three activated carbons was carried out to study the adsorption mechanisms. In all cases the adsorption mechanism is based on π-π interactions between the aromatic moiety of the adsorbates and the arene centres of the graphite sheets. The differences in the normalized adsorption capacities of the adsorbents for a set of adsorbates indicate that the π-donor or π-withdrawing character of the functional groups have a clear influence on the basicity of the arene centres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen de la comunicación presentada en PIC2015 – the 14th International Congress on Combustion By-Products and Their Health Effects, Umeå, Sweden, 14-17 June 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen del póster presentado en Symposium on Renewable Energy and Products from Biomass and Waste, CIUDEN (Cubillos de Sil, León, Spain), 12-13 May 2015