6 resultados para area-preserving maps

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comunicación presentada en el 2nd International Workshop on Pattern Recognition in Information Systems, Alicante, April, 2002.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different types of land use are usually present in the areas adjacent to many shallow karst cavities. Over time, the increasing amount of potentially harmful matter and energy, of mainly anthropic origin or influence, that reaches the interior of a shallow karst cavity can modify the hypogeal ecosystem and increase the risk of damage to the Palaeolithic rock art often preserved within the cavity. This study proposes a new Protected Area status based on the geological processes that control these matter and energy fluxes into the Altamira cave karst system. Analysis of the geological characteristics of the shallow karst system shows that direct and lateral infiltration, internal water circulation, ventilation, gas exchange and transmission of vibrations are the processes that control these matter and energy fluxes into the cave. This study applies a comprehensive methodological approach based on Geographic Information Systems (GIS) to establish the area of influence of each transfer process. The stratigraphic and structural characteristics of the interior of the cave were determined using 3D Laser Scanning topography combined with classical field work, data gathering, cartography and a porosity–permeability analysis of host rock samples. As a result, it was possible to determine the hydrogeological behavior of the cave. In addition, by mapping and modeling the surface parameters it was possible to identify the main features restricting hydrological behavior and hence direct and lateral infiltration into the cave. These surface parameters included the shape of the drainage network and a geomorphological and structural characterization via digital terrain models. Geological and geomorphological maps and models integrated into the GIS environment defined the areas involved in gas exchange and ventilation processes. Likewise, areas that could potentially transmit vibrations directly into the cave were identified. This study shows that it is possible to define a Protected Area by quantifying the area of influence related to each transfer process. The combined maximum area of influence of all the processes will result in the new Protected Area. This area will thus encompass all the processes that account for most of the matter and energy carried into the cave and will fulfill the criteria used to define the Protected Area. This methodology is based on the spatial quantification of processes and entities of geological origin and can therefore be applied to any shallow karst system that requires protection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG) network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new methodology is proposed to produce subsidence activity maps based on the geostatistical analysis of persistent scatterer interferometry (PSI) data. PSI displacement measurements are interpolated based on conditional Sequential Gaussian Simulation (SGS) to calculate multiple equiprobable realizations of subsidence. The result from this process is a series of interpolated subsidence values, with an estimation of the spatial variability and a confidence level on the interpolation. These maps complement the PSI displacement map, improving the identification of wide subsiding areas at a regional scale. At a local scale, they can be used to identify buildings susceptible to suffer subsidence related damages. In order to do so, it is necessary to calculate the maximum differential settlement and the maximum angular distortion for each building of the study area. Based on PSI-derived parameters those buildings in which the serviceability limit state has been exceeded, and where in situ forensic analysis should be made, can be automatically identified. This methodology has been tested in the city of Orihuela (SE Spain) for the study of historical buildings damaged during the last two decades by subsidence due to aquifer overexploitation. The qualitative evaluation of the results from the methodology carried out in buildings where damages have been reported shows a success rate of 100%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results of an ex-post assessment of two important dams in Brazil. The study follows the principles of Social Impact Management, which offer a suitable framework for analyzing the complex social transformations triggered by hydroelectric dams. In the implementation of this approach, participative causal maps were used to identify the ex-post social impacts of the Porto Primavera and Rosana dams on the community of Porto Rico, located along the High Paraná River. We found that in the operation of dams there are intermediate causes of a political nature, stemming from decisions based on values and interests not determined by neutral, exclusively technical reasons; and this insight opens up an area of action for managing the negative impacts of dams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research described in this thesis was motivated by the need of a robust model capable of representing 3D data obtained with 3D sensors, which are inherently noisy. In addition, time constraints have to be considered as these sensors are capable of providing a 3D data stream in real time. This thesis proposed the use of Self-Organizing Maps (SOMs) as a 3D representation model. In particular, we proposed the use of the Growing Neural Gas (GNG) network, which has been successfully used for clustering, pattern recognition and topology representation of multi-dimensional data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models, without considering time constraints. It is proposed a hardware implementation leveraging the computing power of modern GPUs, which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). The proposed methods were applied to different problem and applications in the area of computer vision such as the recognition and localization of objects, visual surveillance or 3D reconstruction.