1 resultado para actuator graphs (CAG)
em Universidad de Alicante
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (227)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (12)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (28)
- Boston University Digital Common (6)
- Brock University, Canada (12)
- Bulgarian Digital Mathematics Library at IMI-BAS (9)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (33)
- CentAUR: Central Archive University of Reading - UK (18)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (5)
- Cochin University of Science & Technology (CUSAT), India (32)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Cornell: DigitalCommons@ILR (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (6)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (20)
- Indian Institute of Science - Bangalore - Índia (186)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (4)
- Massachusetts Institute of Technology (3)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (15)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (37)
- Queensland University of Technology - ePrints Archive (110)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (12)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (16)
- School of Medicine, Washington University, United States (1)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (13)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Montréal, Canada (1)
- University of Michigan (20)
- University of Queensland eSpace - Australia (19)
- University of Southampton, United Kingdom (2)
- University of Washington (1)
Resumo:
In this paper, we propose a novel method for the unsupervised clustering of graphs in the context of the constellation approach to object recognition. Such method is an EM central clustering algorithm which builds prototypical graphs on the basis of fast matching with graph transformations. Our experiments, both with random graphs and in realistic situations (visual localization), show that our prototypes improve the set median graphs and also the prototypes derived from our previous incremental method. We also discuss how the method scales with a growing number of images.