4 resultados para Virtual World
em Universidad de Alicante
Resumo:
The potential of integrating multiagent systems and virtual environments has not been exploited to its whole extent. This paper proposes a model based on grammars, called Minerva, to construct complex virtual environments that integrate the features of agents. A virtual world is described as a set of dynamic and static elements. The static part is represented by a sequence of primitives and transformations and the dynamic elements by a series of agents. Agent activation and communication is achieved using events, created by the so-called event generators. The grammar defines a descriptive language with a simple syntax and a semantics, defined by functions. The semantics functions allow the scene to be displayed in a graphics device, and the description of the activities of the agents, including artificial intelligence algorithms and reactions to physical phenomena. To illustrate the use of Minerva, a practical example is presented: a simple robot simulator that considers the basic features of a typical robot. The result is a functional simple simulator. Minerva is a reusable, integral, and generic system, which can be easily scaled, adapted, and improved. The description of the virtual scene is independent from its representation and the elements that it interacts with.
Resumo:
Virtual Worlds Generator is a grammatical model that is proposed to define virtual worlds. It integrates the diversity of sensors and interaction devices, multimodality and a virtual simulation system. Its grammar allows the definition and abstraction in symbols strings of the scenes of the virtual world, independently of the hardware that is used to represent the world or to interact with it. A case study is presented to explain how to use the proposed model to formalize a robot navigation system with multimodal perception and a hybrid control scheme of the robot.
Resumo:
Virtual Worlds Generator is a grammatical model that is proposed to define virtual worlds. It integrates the diversity of sensors and interaction devices, multimodality and a virtual simulation system. Its grammar allows the definition and abstraction in symbols strings of the scenes of the virtual world, independently of the hardware that is used to represent the world or to interact with it. A case study is presented to explain how to use the proposed model to formalize a robot navigation system with multimodal perception and a hybrid control scheme of the robot. The result is an instance of the model grammar that implements the robotic system and is independent of the sensing devices used for perception and interaction. As a conclusion the Virtual Worlds Generator adds value in the simulation of virtual worlds since the definition can be done formally and independently of the peculiarities of the supporting devices.
Resumo:
The Global Experiment, Water: A Chemical Solution, was one of the flagship activities of the International Year of Chemistry (IYC). During the virtual colloquium of the spring 2012 online ConfChem conference, the main results of this year-long experiment were presented and discussed online for a week. Some of the main conclusions of the virtual conversations relate to the benefits of creating online communities of people sharing similar interests, the use of online educational platforms to gather massive amounts of data, and specific questions about the development of this IYC initiative. The activities of the global water experiment (GWE) were designed by a team of experts and the protocols are available online on the GWE Web site. The results were shown in one interactive world map that allowed students to learn about data visualization, validation, and interpretation. The feedback obtained from the participants of the GWE and later by the contributors of the virtual colloquium was very positive. Many participants asked specific and technical questions about the development of this experiment, while others excitedly endorsed the convenience of these large open-access activities to promote chemistry worldwide. The estimate is that over 2 million people took part in the GWE during the IYC. This communication summarizes one of the invited papers to the ConfChem online conference: A Virtual Colloquium to Sustain and Celebrate IYC 2011 Initiatives in Global Chemical Education, held from May 18 to June 29, 2012 and hosted by the ACS DivCHED Committee on Computers in Chemical Education and the IUPAC Committee on Chemistry Education.