8 resultados para Vector Space IR, Search Engines, Document Clustering, Document
em Universidad de Alicante
Resumo:
In this paper we present a complete system for the treatment of both geographical and temporal dimensions in text and its application to information retrieval. This system has been evaluated in both the GeoTime task of the 8th and 9th NTCIR workshop in the years 2010 and 2011 respectively, making it possible to compare the system to contemporary approaches to the topic. In order to participate in this task we have added the temporal dimension to our GIR system. The system proposed here has a modular architecture in order to add or modify features. In the development of this system, we have followed a QA-based approach as well as multi-search engines to improve the system performance.
Resumo:
The goal of the project is to analyze, experiment, and develop intelligent, interactive and multilingual Text Mining technologies, as a key element of the next generation of search engines, systems with the capacity to find "the need behind the query". This new generation will provide specialized services and interfaces according to the search domain and type of information needed. Moreover, it will integrate textual search (websites) and multimedia search (images, audio, video), it will be able to find and organize information, rather than generating ranked lists of websites.
Resumo:
This paper provides new versions of the Farkas lemma characterizing those inequalities of the form f(x) ≥ 0 which are consequences of a composite convex inequality (S ◦ g)(x) ≤ 0 on a closed convex subset of a given locally convex topological vector space X, where f is a proper lower semicontinuous convex function defined on X, S is an extended sublinear function, and g is a vector-valued S-convex function. In parallel, associated versions of a stable Farkas lemma, considering arbitrary linear perturbations of f, are also given. These new versions of the Farkas lemma, and their corresponding stable forms, are established under the weakest constraint qualification conditions (the so-called closedness conditions), and they are actually equivalent to each other, as well as equivalent to an extended version of the so-called Hahn–Banach–Lagrange theorem, and its stable version, correspondingly. It is shown that any of them implies analytic and algebraic versions of the Hahn–Banach theorem and the Mazur–Orlicz theorem for extended sublinear functions.
Resumo:
This paper proves that every zero of any n th , n ≥ 2, partial sum of the Riemann zeta function provides a vector space of basic solutions of the functional equation f(x)+f(2x)+⋯+f(nx)=0,x∈R . The continuity of the solutions depends on the sign of the real part of each zero.
Resumo:
Paraconsistent logic admits that the contradiction can be true. Let p be the truth values and P be a proposition. In paraconsistent logic the truth values of contradiction is . This equation has no real roots but admits complex roots . This is the result which leads to develop a multivalued logic to complex truth values. The sum of truth values being isomorphic to the vector of the plane, it is natural to relate the function V to the metric of the vector space R2. We will adopt as valuations the norms of vectors. The main objective of this paper is to establish a theory of truth-value evaluation for paraconsistent logics with the goal of using in analyzing ideological, mythical, religious and mystic belief systems.
Resumo:
Given a convex optimization problem (P) in a locally convex topological vector space X with an arbitrary number of constraints, we consider three possible dual problems of (P), namely, the usual Lagrangian dual (D), the perturbational dual (Q), and the surrogate dual (Δ), the last one recently introduced in a previous paper of the authors (Goberna et al., J Convex Anal 21(4), 2014). As shown by simple examples, these dual problems may be all different. This paper provides conditions ensuring that inf(P)=max(D), inf(P)=max(Q), and inf(P)=max(Δ) (dual equality and existence of dual optimal solutions) in terms of the so-called closedness regarding to a set. Sufficient conditions guaranteeing min(P)=sup(Q) (dual equality and existence of primal optimal solutions) are also provided, for the nominal problems and also for their perturbational relatives. The particular cases of convex semi-infinite optimization problems (in which either the number of constraints or the dimension of X, but not both, is finite) and linear infinite optimization problems are analyzed. Finally, some applications to the feasibility of convex inequality systems are described.
Resumo:
This note provides an approximate version of the Hahn–Banach theorem for non-necessarily convex extended-real valued positively homogeneous functions of degree one. Given p : X → R∪{+∞} such a function defined on the real vector space X, and a linear function defined on a subspace V of X and dominated by p (i.e. (x) ≤ p(x) for all x ∈ V), we say that can approximately be p-extended to X, if is the pointwise limit of a net of linear functions on V, every one of which can be extended to a linear function defined on X and dominated by p. The main result of this note proves that can approximately be p-extended to X if and only if is dominated by p∗∗, the pointwise supremum over the family of all the linear functions on X which are dominated by p.
Resumo:
This paper describes the first participation of IR-n system at Spoken Document Retrieval, focusing on the experiments we made before participation and showing the results we obtained. IR-n system is an Information Retrieval system based on passages and the recognition of sentences to define them. So, the main goal of this experiment is to adapt IR-n system to the spoken document structure by means of the utterance splitter and the overlapping passage technique allowing to match utterances and sentences.