4 resultados para Thermal diffusion in liquids
em Universidad de Alicante
Resumo:
The pyrolysis and combustion of corn stover were studied by dynamic thermogravimetry and derivate thermogravimetry (TG-DTG) at heating rates of 5, 10, 20 and 50 K min−1 at atmospheric pressure. For the simulation of pyrolysis and combustion processes a kinetic model based on the distribution of activation energies was used, with three pools of reactants (three pseudocomponents) because of the complexity of the biomass samples of agricultural origin. The experimental thermogravimetric data of pyrolysis and combustion processes were simultaneously fitted to determine a single set of kinetic parameters able to describe both processes at the different heating rates. The model proposed achieves a good correlation between the experimental and calculated curves, with an error of less than 4% for fitting four heating rates simultaneously. The experimental results and kinetic parameters may provide useful data for the design of thermo decomposition processing system using corn stover as feedstock. On the other hand, analysis of the main compounds in the evolved gas is given by means of a microcromatograph.
Resumo:
This paper addresses the problem of predicting the critical parameters that characterize thermal runaway in a tubular reactor with wall cooling, introducing a new view of the n-th order kinetics reactions. The paper describes the trajectories of the system in the temperature-(concentration)n plane, and deduces the conditions for the thermal risk.
Resumo:
Solution-processed polymer films are used in multiple technological applications. The presence of residual solvent in the film, as a consequence of the preparation method, affects the material properties, so films are typically subjected to post-deposition thermal annealing treatments aiming at its elimination. Monitoring the amount of solvent eliminated as a function of the annealing parameters is important to design a proper treatment to ensure complete solvent elimination, crucial to obtain reproducible and stable material properties and therefore, device performance. Here we demonstrate, for the first time to our knowledge, the use of an organic distributed feedback (DFB) laser to monitor with high precision the amount of solvent extracted from a spin-coated polymer film as a function of the thermal annealing time. The polymer film of interest, polystyrene in the present work, is doped with a small amount of a laser dye as to constitute the active layer of the laser device and deposited over a reusable DFB resonator. It is shown that solvent elimination translates into shifts in the DFB laser wavelength, as a consequence of changes in film thickness and refractive index. The proposed method is expected to be applicable to other types of annealing treatments, polymer-solvent combinations or film deposition methods, thus constituting a valuable tool to accurately control the quality and reproducibility of solution-processed polymer thin films.
Resumo:
Diamond/metal composites are very attractive materials for electronics because their excellent thermal properties make them suitable for use as heat sink elements in multifunctional electronic packaging systems. To enlarge the potential applications of these composites, current efforts are mainly focused on investigating different ways to improve the contact between metal and diamond. In the present work, a theoretical study has been carried out to determine the differences between the interfacial thermal conductance of aluminum/diamond and aluminum/graphite interfaces. Additionally, diamond particles were surface modified with oxygen to observe how it affects the quality of the diamond surface. The characterization of the surface of diamonds has been performed using different surface analysis techniques, especially x-ray photoelectron spectroscopy and temperature-programmed desorption.