6 resultados para Styles of conflicts solution
em Universidad de Alicante
Resumo:
This paper presents a series of calculation procedures for computer design of ternary distillation columns overcoming the iterative equilibrium calculations necessary in these kind of problems and, thus, reducing the calculation time. The proposed procedures include interpolation and intersection methods to solve the equilibrium equations and the mass and energy balances. The calculation programs proposed also include the possibility of rigorous solution of mass and energy balances and equilibrium relations.
Resumo:
Purpose: In this paper the authors aim to show the advantages of using the decomposition method introduced by Adomian to solve Emden's equation, a classical non‐linear equation that appears in the study of the thermal behaviour of a spherical cloud and of the gravitational potential of a polytropic fluid at hydrostatic equilibrium. Design/methodology/approach: In their work, the authors first review Emden's equation and its possible solutions using the Frobenius and power series methods; then, Adomian polynomials are introduced. Afterwards, Emden's equation is solved using Adomian's decomposition method and, finally, they conclude with a comparison of the solution given by Adomian's method with the solution obtained by the other methods, for certain cases where the exact solution is known. Findings: Solving Emden's equation for n in the interval [0, 5] is very interesting for several scientific applications, such as astronomy. However, the exact solution is known only for n=0, n=1 and n=5. The experiments show that Adomian's method achieves an approximate solution which overlaps with the exact solution when n=0, and that coincides with the Taylor expansion of the exact solutions for n=1 and n=5. As a result, the authors obtained quite satisfactory results from their proposal. Originality/value: The main classical methods for obtaining approximate solutions of Emden's equation have serious computational drawbacks. The authors make a new, efficient numerical implementation for solving this equation, constructing iteratively the Adomian polynomials, which leads to a solution of Emden's equation that extends the range of variation of parameter n compared to the solutions given by both the Frobenius and the power series methods.
Resumo:
The interfacial properties of Pt(111) single crystal electrodes have been investigated in the pH range 3 < pH < 5 in order to obtain information about the acidity of electrosorbed water. Proper experimental conditions are defined to avoid local pH changes while maintaining the absence of specifically adsorbed anions and preserving the cleanliness of the solution. For this purpose, buffer solutions resulting from mixtures of NaF and HClO4 are used. Total charge curves are obtained at different pHs from the integration of the voltammetric currents in combination with CO charge displacement experiments. Analysis of the composition of the interphase as a function of the pH provides information for the understanding of the notion of interfacial pH.
Resumo:
Local changes of the interfacial pH can significantly affect the rate and mechanism during the course of an electrodic reaction. For instance, different pH values will have a significant effect on the equilibrium properties of both solution and surface species, altering the reactions kinetics. Ethanol oxidation at platinum electrodes in alkaline media involves the fast consumption of OH− species that will change the local pH at the electrode surface, decreasing the reaction rate. In this study, the local pH change during ethanol oxidation in alkaline media is accomplished by using rotating ring-disc electrode (RRDE) experiments. The current at the ring when polarized at the onset of hydrogen evolution serves as a measure of the local pH in the vicinity of the electrode. The results show that the current at the ring at 0.1 V (vs. RHE) becomes more negative during ethanol oxidation, owing to a change in the equilibrium potential of the hydrogen evolution reaction caused by a change in the local pH.
Resumo:
Los avances científicos en el campo de la genética y de la biología han obligado al legislador a adoptar soluciones jurídicas concretas, generalmente partiendo de determinados criterios éticos que, en ocasiones, entran en conflicto con la ética individual o libertad de conciencia. Pues bien, una de estas cuestiones es la llamada «gestación de sustitución». La gestación de sustitución ha suscitado un intenso debate en el ámbito social, ético y jurídico, que continúa vigente porque en la práctica seguimos encontrando casos de gestación de sustitución que generan conflictos de difícil solución y que revelan, sin duda, la complejidad de este fenómeno.
Resumo:
In this work, we describe the growth of NaCl crystals by evaporating droplets of aqueous solution while monitoring them with infrared thermography. Over the course of the evaporation experiments, variations in the recorded signal were observed and interpreted as being the result of evaporation and crystallisation. In particular, we observed sharp and transient decreases in the thermosignal during the later stages of high-concentration drop evaporation. The number of such events per experiment, referred to as “pop-cold events”, varied from 1 to over 100 and had durations from 1 to 15 s. These events are interpreted as a consequence from the top-supplied creeping (TSC) of the solution feeding the growth of efflorescence-like crystals. This phenomenon occurred when the solution was no longer macroscopically visible. In this case, efflorescence-like crystals with a spherulite shape grew around previously formed cubic crystals. Other crystal morphologies were also observed but were likely fed by mass diffusion or bottom-supplied creeping (BSC) and were not associated with “pop-cold events”; these morphologies included the cubic crystals at the centre, ring-shaped at the edge of droplets and fan-shaped crystals. After complete evaporation, an analysis of the numbers and sizes of the different types of crystals was performed using image processing. Clear differences in their sizes and distribution were observed in relation to the salt concentration. Infrared thermography permitted a level of quantification that previously was only possible using other techniques. As example, the intermittent efflorescence growth process was clearly observed and measured for the first time using infrared thermography.