Infrared thermography monitoring of the NaCl crystallisation process


Autoria(s): Vázquez, Patricia; Thomachot-Schneider, Céline; Mouhoubi, Kamel; Fronteau, Gilles; Gommeaux, Maxime; Benavente, David; Barbin, Vincent; Bodnar, Jean-Luc
Contribuinte(s)

Universidad de Alicante. Departamento de Ciencias de la Tierra y del Medio Ambiente

Petrología Aplicada

Data(s)

16/09/2016

16/09/2016

01/07/2015

Resumo

In this work, we describe the growth of NaCl crystals by evaporating droplets of aqueous solution while monitoring them with infrared thermography. Over the course of the evaporation experiments, variations in the recorded signal were observed and interpreted as being the result of evaporation and crystallisation. In particular, we observed sharp and transient decreases in the thermosignal during the later stages of high-concentration drop evaporation. The number of such events per experiment, referred to as “pop-cold events”, varied from 1 to over 100 and had durations from 1 to 15 s. These events are interpreted as a consequence from the top-supplied creeping (TSC) of the solution feeding the growth of efflorescence-like crystals. This phenomenon occurred when the solution was no longer macroscopically visible. In this case, efflorescence-like crystals with a spherulite shape grew around previously formed cubic crystals. Other crystal morphologies were also observed but were likely fed by mass diffusion or bottom-supplied creeping (BSC) and were not associated with “pop-cold events”; these morphologies included the cubic crystals at the centre, ring-shaped at the edge of droplets and fan-shaped crystals. After complete evaporation, an analysis of the numbers and sizes of the different types of crystals was performed using image processing. Clear differences in their sizes and distribution were observed in relation to the salt concentration. Infrared thermography permitted a level of quantification that previously was only possible using other techniques. As example, the intermittent efflorescence growth process was clearly observed and measured for the first time using infrared thermography.

This work was partially funded by the BQR call from the University of Reims Champagne-Ardenne (project Transels).

Identificador

Infrared Physics & Technology. 2015, 71: 198-207. doi:10.1016/j.infrared.2015.03.013

1350-4495 (Print)

1879-0275 (Online)

http://hdl.handle.net/10045/57949

10.1016/j.infrared.2015.03.013

Idioma(s)

eng

Publicador

Elsevier

Relação

http://dx.doi.org/10.1016/j.infrared.2015.03.013

Direitos

© 2015 Elsevier B.V.

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #Infrared thermography #Salt crystallisation #NaCl #Creeping #Emissivity #Efflorescence #Petrología y Geoquímica
Tipo

info:eu-repo/semantics/article