11 resultados para Steam reforming of methanol
em Universidad de Alicante
Resumo:
Recently, the steam reforming of biofuels has been presented as a potential hydrogen source for fuel cells. Because this scenario represents an interesting opportunity for Colombia (South America), which produces large amounts of bioethanol, the steam reforming of ethanol was studied over a bimetallic RhPt/La2O3 catalyst under bulk mass transfer conditions. The effect of temperature and the initial concentrations of ethanol and water were evaluated at space velocities above 55,000 h−1 to determine the conditions that maximize the H2/CO ratio and reduce CH4 production while maintaining 100% conversion of ethanol. These requirements were accomplished when 21 mol% H2O and 3 mol% C2H5OH (steam/ethanol molar ratio = 7) were reacted at 600 °C. The catalyst stability was assessed under these reaction conditions during 120 h on stream, obtaining ethanol conversions above 99% during the entire test. The effect of both H2 and air flows as catalyst regeneration treatments were evaluated after 44 and 67 h on stream, respectively. The results showed that H2 treatment accelerated catalyst deactivation, and air regeneration increased both the catalyst stability and the H2 selectivity while decreasing CH4 generation. Fresh and spent catalyst samples were characterized by TEM/EDX, XPS, TPR, and TGA. Although the Rh and Pt in the fresh catalyst were completely reduced, the spent samples showed a partial oxidation of Rh and small amounts of carbonaceous residue. A possible Rh–Pt–Rh2O3 structure was proposed as the active site on the catalyst, which was regenerated by air treatment.
Resumo:
CeO2-, ZrO2-, and La2O3-supported Rh-Pt catalysts were tested to assess their ability to catalyze the steam reforming of ethanol (SRE) for H2 production. SRE activity tests were performed using EtOH:H2O:N2 (molar ratio 1:3:51) at a gaseous space velocity of 70,600 h−1 between 400 and 700 °C at atmospheric pressure. The SRE stability of the catalysts was tested at 700 °C for 27 h time on stream under the same conditions. RhPt/CeO2, which showed the best performance in the stability test, also produced the highest H2 yield above 600 °C, followed by RhPt/La2O3 and RhPt/ZrO2. The fresh and aged catalysts were characterized by TEM, XPS, and TGA. The higher H2 selectivity of RhPt/CeO2 was ascribed to the formation of small (~5 nm) and stable particles probably consistent of Rh-Pt alloys with a Pt surface enrichment. Both metals were oxidized and acted as an almost constant active phase during the stability test owing to strong metal-support interactions, as well as the superior oxygen mobility of the support. The TGA results confirmed the absence of carbonaceous residues in all the aged catalysts.
Resumo:
A detailed study on the preparation of bimetallic PtSn/C catalysts using surface-controlled synthesis methods, and on their catalytic performance in the glycerol steam reforming reaction has been carried out. In order to obtain these well-defined bimetallic phases, techniques derived from Surface Organometallic Chemistry on Metals (SOMC/M) were used. The preparation process involved the reaction between an organometallic compound ((C4H9)4Sn) and a supported transition metal (Pt) in a H2 atmosphere. Catalysts with Sn/Pt atomic ratios of 0.2, 0.3, 0.5, and 0.7 were obtained, and characterized using several techniques: ICP, H2 chemisorption, TEM and XPS. These systems were tested in the glycerol steam reforming varying the reaction conditions (glycerol concentration and reaction temperature). The best performance was observed for the catalysts with the lowest tin contents (PtSn0.2/C and PtSn0.3/C). It was observed that the presence of tin increased the catalysts’ stability when working under more severe reaction conditions.
Resumo:
Low metal content Co and Ni alumina supported catalysts (4.0, 2.5 and 1.0 wt% nominal metal content) have been prepared, characterized (by ICP-OES, TEM, TPR-H2 and TPO) and tested for the CO2 reforming of methane. The objective is to optimize the metal loading in order to have a more efficient system. The selected reaction temperature is 973 K, although some tests at higher reaction temperature have been also performed. The results show that the amount of deposited carbon is noticeably lower than that obtained with the Co and Ni reference catalysts (9 wt%), but the CH4 and CO2 conversions are also lower. Among the catalysts tested, the Co(1) catalyst (the value in brackets corresponds to the nominal wt% loading) is deactivated during the first minutes of reaction because CoAl2O4 is formed, while Ni(1) and Co(2.5) catalysts show a high specific activity for methane conversion, a high stability and a very low carbon deposition.
Resumo:
In this study, we examine the performance of Cu2O and Cu2O/ZnO surfaces in a filter-press electrochemical cell for the continuous electroreduction of CO2 into methanol. The electrodes are prepared by airbrushing the metal particles onto a porous carbon paper and then are electrochemically characterized by cyclic voltammetry analyses. Particular emphasis is placed on evaluating and comparing the methanol production and Faradaic efficiencies at different loadings of Cu2O particles (0.5, 1 and 1.8 mg cm−2), Cu2O/ZnO weight ratios (1:0.5, 1:1 and 1:2) and electrolyte flow rates (1, 2 and 3 ml min−1 cm−2). The electrodes including ZnO in their catalytic surface were stable after 5 h, in contrast with Cu2O-deposited carbon papers that present strong deactivation with time. The maximum methanol formation rate and Faradaic efficiency for Cu2O/ZnO (1:1)-based electrodes, at an applied potential of −1.3 V vs. Ag/AgCl, were r = 3.17 × 10−5 mol m−2 s−1 and FE = 17.7 %, respectively. Consequently, the use of Cu2O–ZnO mixtures may be of application for the continuous electrochemical formation of methanol, although further research is still required in order to develop highly active, selective and stable catalysts the electroreduction of CO2 to methanol.
Resumo:
Resumen del póster presentado en Symposium on Renewable Energy and Products from Biomass and Waste, CIUDEN (Cubillos de Sil, León, Spain), 12-13 May 2015
Resumo:
In the present work, a very detailed study of the reforming of syngas produced in the decomposition of Posidonia oceanica is done. The effect of the presence of different amounts of dolomite is analyzed. Also pyrolysis is studied, in nitrogen atmosphere, and gasification in the presence of air, oxygen and different amounts of steam. A detailed discussion on formation and destruction of tars is done. Furthermore, the effect of the heating rate in the decomposition and the residence time of the evolved gases are discussed. Syngas with ratio H2/CO from 0.3 to ca. 3 can be obtained from this interesting material. Marine species (microalgae) are usually studied with the aim of cultivating them for gas or oil production, but in this paper we draw attention to the possibility of using a natural resource with a very small impact in the ecosystem.
Resumo:
In this study wastewater treatment plant (WWTP) sludge was subjected to a reactive pyrolysis treatment to produce a high quality pyro-oil. Sludge was treated in supercritical conditions in the presence of methanol using hexane as cosolvent in a high pressure lab-autoclave. The variables affecting the pyro-oil yield and the product quality, such as mass ratio of alcohol to sludge, presence of cosolvent and temperature, were investigated. It was found that the use of a non-polar cosolvent (hexane) presents advantages in the production of high quality pyro-oil from sludge: increase of the non-polar pyro-oil yield and a considerable reduction of the amount of methanol needed to carry out the transesterification of fatty acids present in the sludge.
Resumo:
The effect of a severe steaming treatment on the physicochemical properties and catalytic performance of H-SAPO-34 molecular sieves during the methanol-to-hydrocarbons (MTH) reaction has been investigated with a combination of scanning transmission X-ray microscopy (STXM), catalytic testing, and bulk characterization techniques, including ammonia temperature programmed desorption and 27Al and 29Si magic angle spinning nuclear magnetic resonance. For this purpose, two samples, namely a calcined and a steamed H-SAPO-34 catalyst powder, have been compared. It has been found that calcined H-SAPO-34 displays a high selectivity towards light olefins, yet shows a poor stability as compared to a zeolite H-ZSM-5 catalyst. Moreover, in situ STXM at the carbon K-edge during the MTH reaction allows construction of nanoscale chemical maps of the hydrocarbon species formed within the H-SAPO-34 aggregates as a function of reaction time and steam post-treatment. It was found that there is an initial preferential formation of coke precursor species within the core of the H-SAPO-34 aggregates. For longer times on stream the formation of the coke precursor species is extended to the outer regions, progressively filling the entire H-SAPO-34 catalyst particle. In contrast, the hydrothermally treated H-SAPO-34 showed similar reaction selectivity, but decreased activity and catalyst stability with respect to its calcined counterpart. These variations in MTH performance are related to a faster and more homogeneous formation of coke precursor species filling up the entire steamed H-SAPO-34 catalyst particle. Finally, the chemical imaging capabilities of the STXM method at the Al and Si K-edge are illustrated by visualizing the silicon islands at the nanoscale before and after steaming H-SAPO-34.
Resumo:
Pt–Pd bimetallic nanoparticles supported on graphene oxide (GO) nanosheets were prepared by a sonochemical reduction method in the presence of polyethylene glycol as a stabilizing agent. The synthetic method allowed for a fine tuning of the particle composition without significant changes in their size and degree of aggregation. Detailed characterization of GO-supported Pt–Pd catalysts was carried out by transmission electron microscopy (TEM), AFM, XPS, and electrochemical techniques. Uniform deposition of Pt–Pd nanoparticles with an average diameter of 3 nm was achieved on graphene nanosheets using a novel dual-frequency sonication approach. GO-supported bimetallic catalyst showed significant electrocatalytic activity for methanol oxidation. The influence of different molar compositions of Pt and Pd (1:1, 2:1, and 3:1) on the methanol oxidation efficiency was also evaluated. Among the different Pt/Pd ratios, the 1:1 ratio material showed the lowest onset potential and generated the highest peak current density. The effect of catalyst loading on carbon paper (working electrode) was also studied. Increasing the catalyst loading beyond a certain amount lowered the catalytic activity due to the aggregation of metal particle-loaded GO nanosheets.
Resumo:
The influence of metal loading and support surface functional groups (SFG) on methane dry reforming (MDR) over Ni catalysts supported on pine-sawdust derived activated carbon were studied. Using pine sawdust as the catalyst support precursor, the smallest variety and lowest concentration of SFG led to best Ni dispersion and highest catalytic activity, which increased with Ni loading up to 3 Ni atoms nm-2. At higher Ni loading, the formation of large metal aggregates was observed, consistent with a lower "apparen" surface area and a decrease in catalytic activity. The H2/CO ratio rose with increasing reaction temperature, indicating that increasingly important side reactions were taking place in addition to MDR.