10 resultados para Single-crystal electrode

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dopamine is the biological molecule responsible, among other functions, of the heart beat and blood pressure regulation. Its loss, in the human body, can result in serious diseases such as Parkinson's, schizophrenia or depression. Structurally, this molecule belongs to the group of catecholamines, together with epinephrine (adrenaline) and norepinephrine (noradrenaline). The hydroquinone moiety of the molecule can be easily oxidized to quinone, rendering the electrochemical methods a convenient approach for the development of dopamine biosensors. The reactivity of similar aromatic molecules, such as catechol and hydroquinone, at well-ordered platinum surfaces, has recently been investigated in our group. In this paper, we extend these studies to the structurally related molecule dopamine. The study has been performed in neutral pH, since this is closer to the natural conditions for these molecules in biological media. Cyclic voltammetry and in situ infra-red spectroscopy have been combined to extract information about the behavior of this molecule on well-defined platinum surfaces. Dopamine appears to be electrochemically active and reveals interesting adsorption phenomena at low potentials (0.15–0.25 V vs RHE), sensitive to the single crystal orientation. The adsorption of dopamine on these surfaces is very strong, taking place at much lower potentials than the electron transfer from solution species. Specifically, the voltammetry of Pt(1 1 1) and Pt(1 0 0) in dopamine solutions shows an oxidation peak at potentials close to the onset of hydrogen evolution, which is related to the desorption of hydrogen and the adsorption of dopamine. On the other hand, adsorption on Pt(1 1 0) is irreversible and the surface appears totally blocked. Spectroscopic results indicate that dopamine is adsorbed flat on the surface. At potentials higher than 0.6 V vs RHE the three basal planes show a common redox process. The initial formation of the quinone moiety is followed by a chemical step resulting in the formation of 5,6-dihydroxyindoline quinone as final product. This oxidation process has also been investigated by vibrational spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behavior of methanesulfonic acid on platinum single crystal electrode surfaces is investigated by cyclic voltammetry and infrared spectroscopy measurements. The results are compared with the voltammetric profiles of perchloric and trifluoromethanesulfonic acids. The differences are interpreted in terms of the effect of the anion on the structure of water. No adsorbed species are detected by infrared spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of ethanol (EtOH) at Pt(111) electrodes is dominated by the 4e path leading to acetic acid. The inclusion of surface defects such as those present on stepped surfaces leads to an increase of the reactivity towards the most desirable 12e path leading to CO2 as final product. This path is also favored when the methyl group is more oxidized, as in the case of ethylene glycol (EG) that spontaneously decomposes to CO on Pt(111) electrodes, thus showing a more effective breaking of the C-C bond. Some trends in reactivity can be envisaged when other derivative molecules are compared at well-ordered electrodes. This strategy was used in the past, but the improvement in the electrode pretreatment and the overall information available on the subject suggest that relevant information is still missing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the influence of electrode material and crystallographic structure on electron transfer and biofilm formation of Geobacter sulfurreducens. Single-crystal gold - Au(110), Au(111), Au(210) - and platinum - Pt(100), Pt(110), Pt(111), Pt(210) - electrodes were tested and compared to graphite rods. G. sulfurreducens electrochemically interacts with all these materials with different attachment kinetics and final current production, although redox species involved in the electron transfer to the anode are virtually the same in all cases. Initial bacterial colonization was fastest on graphite up to the monolayer level, whereas gold electrodes led to higher final current densities. Crystal geometry showed to have an important influence, with Au(210) sustaining a current density of up to 1442 (± 101) μA cm- 2 at the steady state, over Au(111) with 961 (± 94) μA cm- 2 and Au(110) with 944 (± 89) μA cm- 2. On the other hand, the platinum electrodes displayed the lowest performances, including Pt(210). Our results indicate that both crystal geometry and electrode material are key parameters for the efficient interaction of bacteria with the substrate and should be considered for the design of novel materials and microbial devices to optimize energy production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present communication studies the adsorption of aniline on platinum single crystal electrodes and the electrochemical properties of the first layers of polyaniline(PANI) grown on those platinum surfaces. The adsorption process was studied in aqueous acidic solution (0.1 M HClO4) and the electrochemical properties of thin films of PANI in both aqueous (1 M HClO4) and non-aqueous media (tetrabutyl ammonium hexafluorophosphate (TBAPF6) with additions of methanesulphonic acid in acetonitrile). First of all, it was found that the adsorption of aniline on platinum single crystal surfaces is a surface sensitive process, and even more important that the adsorption features found at low concentrations (5 × 10−5 M) can be directly correlated to the electrochemical properties of thin films of PANI in the very early stages of polymerization. The Pt(1 1 0) surface was found to be more suitable to obtain polymers with more reversible redox transitions when studied in aqueous media (1 M HClO4). This is in good agreement with the higher polymerization rates found on this surface compared to Pt(1 0 0) and Pt(1 1 1). Finally the differences in ionic exchange rate were greatly enhanced when they were studied in organic media. The AC 250 Hz response in the case of the thin films synthesized on Pt(1 1 0) is about twice greater than that obtained in the other basal planes using polymer layers with the same thickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interface between Au(hkl) basal planes and the ionic liquid 1-Ethyl-2,3-dimethyl imidazolium bis(trifluoromethyl)sulfonil imide was investigated by using both cyclic voltammetry and laser-induced temperature jump. Cyclic voltammetry showed characteristic features, revealing surface sensitive processes at the interfaces Au(hkl)/[Emmim][Tf2N]. From laser-induced heating the potential of maximum entropy (pme) is determined. Pme is close to the potential of zero charge (pzc) and, therefore, the technique provides relevant interfacial information. The following order for the pme values has been found: Au(111) > Au(100) > Au(110). This order correlates well with work function data and values of pzc in aqueous solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical reactivity of catechol-derived adlayers is reported at platinum (Pt) single-crystal electrodes. Pt(111) and stepped vicinal surfaces are used as model surfaces possessing well-ordered nanometer-sized Pt(111) terraces ranging from 0.4 to 12 nm. The electrochemical experiments were designed to probe how the control of monatomic step-density and of atomic-level step structure can be used to modulate molecule–molecule interactions during self-assembly of aromatic-derived organic monolayers at metallic single-crystal electrode surfaces. A hard sphere model of surfaces and a simplified band formation model are used as a theoretical framework for interpretation of experimental results. The experimental results reveal (i) that supramolecular electrochemical effects may be confined, propagated, or modulated by the choice of atomic level crystallographic features (i.e.monatomic steps), deliberately introduced at metallic substrate surfaces, suggesting (ii) that substrate-defect engineering may be used to tune the macroscopic electronic properties of aromatic molecular adlayers and of smaller molecular aggregates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interfacial properties of Pt(111) single crystal electrodes have been investigated in the pH range 3 < pH < 5 in order to obtain information about the acidity of electrosorbed water. Proper experimental conditions are defined to avoid local pH changes while maintaining the absence of specifically adsorbed anions and preserving the cleanliness of the solution. For this purpose, buffer solutions resulting from mixtures of NaF and HClO4 are used. Total charge curves are obtained at different pHs from the integration of the voltammetric currents in combination with CO charge displacement experiments. Analysis of the composition of the interphase as a function of the pH provides information for the understanding of the notion of interfacial pH.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interface between a Pt(111) electrode and a room temperature ionic liquid, 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, was investigated with the laser-induced temperature jump method. In this technique, the temperature of the interface is suddenly increased by applying short laser pulses. The change of the electrode potential caused by the thermal perturbation is measured under coulostatic conditions during the subsequent temperature relaxation. This change is mainly related to the reorganization of the solvent components near the electrode surface. The sign of the potential transient depends on the potential of the experiment. At high potential values, positive transients indicate a higher density of anions than cations close the surface, contributing negatively to the potential of the electrode. Decreasing the applied potential to sufficiently low values, the transient becomes negative, meaning that the density of cations becomes then higher at the surface of the electrode. The potential dependence of the interfacial response shows a marked hysteresis depending on the direction in which the applied potential is changed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim+][NTf2−], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH–CO2−] by a radical–radical coupling after the simultaneous reduction of CO2 and [C2mim+]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim+] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH–CO2−] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H+][NTf2−], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim+][NTf2−], with Pt(110) being the most active electrode studied.