1 resultado para Second-Order Recurrence Relations
em Universidad de Alicante
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (98)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (13)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (16)
- CentAUR: Central Archive University of Reading - UK (84)
- Cochin University of Science & Technology (CUSAT), India (14)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (77)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (1)
- Diposit Digital de la UB - Universidade de Barcelona (6)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (10)
- Duke University (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Instituto Politécnico do Porto, Portugal (10)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (4)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (3)
- Open Access Repository of Indian Theses (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (7)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (9)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (211)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (8)
- Scielo Saúde Pública - SP (49)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (10)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (5)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (19)
- Universidade Federal do Rio Grande do Norte (UFRN) (22)
- Universitat de Girona, Spain (13)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (10)
- Université de Lausanne, Switzerland (18)
- Université de Montréal (1)
- Université de Montréal, Canada (29)
- University of Michigan (8)
- University of Queensland eSpace - Australia (45)
- University of Southampton, United Kingdom (56)
- University of Washington (1)
Resumo:
Dual-phase-lagging (DPL) models constitute a family of non-Fourier models of heat conduction that allow for the presence of time lags in the heat flux and the temperature gradient. These lags may need to be considered when modeling microscale heat transfer, and thus DPL models have found application in the last years in a wide range of theoretical and technical heat transfer problems. Consequently, analytical solutions and methods for computing numerical approximations have been proposed for particular DPL models in different settings. In this work, a compact difference scheme for second order DPL models is developed, providing higher order precision than a previously proposed method. The scheme is shown to be unconditionally stable and convergent, and its accuracy is illustrated with numerical examples.